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Abstract

Purpose

To investigate the suitability of multi-scale spatial information in 30o visual fields (VF), com-

puted from a Convolutional Neural Network (CNN) classifier, for early-glaucoma vs. control

discrimination.

Method

Two data sets of VFs acquired with the OCTOPUS 101 G1 program and the Humphrey

Field Analyzer 24–2 pattern were subdivided into control and early-glaucomatous groups,

and converted into a new image using a novel voronoi representation to train a custom-

designed CNN so to discriminate between control and early-glaucomatous eyes. Saliency

maps that highlight what regions of the VF are contributing maximally to the classification

decision were computed to provide classification justification. Model fitting was cross-vali-

dated and average precision (AP) score performances were computed for our method,

Mean Defect (MD), square-root of Loss Variance (sLV), their combination (MD+sLV), and a

Neural Network (NN) that does not use convolutional features.

Results

CNN achieved the best AP score (0.874±0.095) across all test folds for one data set com-

pared to others (MD = 0.869±0.064, sLV = 0.775±0.137, MD+sLV = 0.839±0.085, NN =

0.843±0.089) and the third best AP score (0.986 ±0.019) on the other one with slight differ-

ence from the other methods (MD = 0.986±0.023, sLV = 0.992±0.016, MD+sLV = 0.987

±0.017, NN = 0.985±0.017). In general, CNN consistently led to high AP across different

data sets. Qualitatively, computed saliency maps appeared to provide clinically relevant

information on the CNN decision for individual VFs.

Conclusion

The proposed CNN offers high classification performance for the discrimination of control

and early-glaucoma VFs when compared with standard clinical decision measures. The

CNN classification, aided by saliency visualization, may support clinicians in the automatic

discrimination of early-glaucomatous and normal VFs.
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Introduction

Glaucoma is one of the most common, irreversible and potentially blinding progressive

optic neuropathies, which is characterized with typical structural damage and functional

deterioration [1,2]. Standard Automated Perimetry (SAP) is an essential tool in the diag-

nosis of glaucoma [3]. Perimetry provides quantitative evaluation on both the central

visual field (VF) and the 24 to 30-degree visual field area via testing the predefined retinal

locations for the individual threshold sensitivity values. The threshold sensitivity at a spe-

cific retinal location is the threshold light intensity (in dB) for which a subject can see a

light stimulus with 50% likelihood. In general, the absolute threshold sensitivities are

compared to age-related normal test point reference values in order to reflect sensitivity
deviations within VFs. (see Fig 1A and 1D)). Sensitivity deviations provide the basis of the

detection of glaucomatous VF defects.

Considering the progressive and irreversible nature of glaucoma, early diagnosis is of

great clinical importance. However, glaucomatous VF deterioration first appears as small,

localized relative defects. This makes obtaining the correct diagnosis challenging in early

glaucoma. Since perimetry is a subjective test with several patient- and eye-related factors

(e.g. measurement noise, poor signal-to-noise ratio, fatigue, fixation losses and learning

effects), it is a limited assessment tool that can cause incorrect interpretation and classifi-

cation in glaucoma [4]. To reduce the influence of noise on the classification result, con-

ventional VF global indices (e.g. mean defect (MD), mean deviation, loss variance (LV),

square root of loss variance (sLV), pattern standard deviation) are typically considered

jointly for clinical classification. However, such indices do not reflect spatial information

and may potentially fail to assist the detection of small and localized defects. Therefore, to

optimize the detection of true early glaucomatous VFs, in clinical practice both the indi-

vidual retinal sensitivity values and their locations in the VF, and the global indices need

to be considered subjectively by clinicians. This process can be challenging for many oph-

thalmologists, in particular when glaucoma is at an early stage. An automated screening

software that is capable of processing both the global and local information within the VF

to discriminate patient-related noise from true glaucomatous functional alterations would

provide significant support for the diagnostic process of glaucoma.

Several strategies for automated glaucoma detection from VFs have been proposed [5–

8]. In combination with different Machine Learning classifiers (i.e. Artificial Neural Net-

works, K-Nearest Neighbors, Support Vector Machines), the use of individual threshold

values or clinical indicators such as MD or sLV, have shown promising performances for

discriminating healthy and early glaucomatous VFs [9]. Yet, these attempts fail to leverage

spatial information within VFs, even though spatial relations have long been known to be

useful for both glaucoma diagnosis [10] and defect pattern discovery [11]. Incorporating

spatial information in a machine learning classifier may thus result in improved discrimi-

nation capabilities.

One classifier that explicitly takes into account spatial information at multiple sizes is

the deep learning method of Convolutional Neural Network (CNN) [12], a form of Artifi-

cial Neural Network that uses spatial convolutions as the basis of its discrimination.

While CNNs have been shown to be extremely effective in detecting biomarkers in OCT

imaging [13] and for Diabetic Retinopathy grading [14], their use with VFs remains

largely unexplored. This is mainly due to two reasons: (i) CNNs operate on images,

whereby pixels have connected neighborhoods that can be defined at multiple scales. This

quality allows CNNs to use local averaging and convolutions to extract features for dis-

crimination tasks. However, VFs acquired from perimeters are not images and hence
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using CNNs on them is not possible in an unmodified manner. (ii) Beyond the ability to

categorize VFs into two clinical groups, it is essential to determine which regions in the

VF contain important information for decision-making. Hence, a strategy that visualizes

which VF locations contribute significantly in a decision would meaningfully reveal and

reduce the “black-box” nature of most automated strategies.

In this study, we present a novel method to discriminate between healthy and early-

glaucomatous VFs using CNNs with an automated methodology. We introduce the con-

cept of “voronoi images”, a method by which VFs acquired from a perimeter can be trans-

formed into 2D images, regardless of the spatial distribution of the test locations within

the 30-degree visual field. These voronoi images then allow us to use a custom designed

CNN to classify VFs. Based on “saliency map” estimation [15,16], we provide two addi-

tional but different types of importance maps that highlight which VF regions contribute

to the CNN decision. These maps are estimated directly from the CNN and are specific to

each individual VF examination. In a next step, the effectiveness of our method was evalu-

ated using two datasets of control and early-glaucomatous VFs and a comparison of our

method with those based on MD, sLV and both, and a Neural Network (NN) that does not

use spatial information was investigated.

Fig 1. Voronoi image representation of 30˚ visual field. (a, d) Example OCTOPUS 101 perimeter G1 program and Humphrey Field Analyzer (HFA) 24–2 test

patterns of 30˚-visual field with age-normalized sensitivity thresholds, i.e. sensitivity deviation shown (b, e) Parcelation of the 30˚ visual field into a 61 by 61 pixel

image using our proposed voronoi method. (c, f) Color-coded pixel values of computed voronoi image where cold colors (blue) depict high defect and warm colors

(red) show low defect values.

https://doi.org/10.1371/journal.pone.0206081.g001
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Method

We begin by describing our strategy to represent VFs as images and how these can then be

used as inputs to a custom designed CNN. We then describe our method to highlight what

regions of the VF are important to the CNN when classifying a VF.

VF to image representation

VFs are converted to images using a voronoi parcelation [17,18] (Fig 1) that we name voronoi

images. Each VF is divided in as many regions as the number of tested VF locations and each

region is assigned the value at the corresponding tested location. To do so, we organize the raw

data in a L-dimensional vector of sensitivity deviations r. Note that each element of rl,
l = 1,2,. . .,L which we call seed points, correspond to a sensitivity deviation value at (xl,yl) coor-

dinate location in the VF. Each seed point rl is associated with its own region Rl, such that any

non-seed location is assigned to the region associated to the seed location to which it is closest.

The resulting voronoi image can be formalized as a two-dimensional matrix V(i,j) such that

Vði; jÞ ¼ rl� ; ð1Þ

where

l� ¼ argminl¼1;2;...;Ljjðxl; ylÞ; ðx; yÞjj
2
; 0� � x; y � 30�: ð2Þ

With this representation, we can consider the VF as a two-dimensional image. An advantage

of such an image representation is that it provides a way to represent perimetric data in a stan-

dardized form, regardless of the pattern used. Fig 1 illustrates converted VFs for two different

test patterns (Fig 1A and 1D) used in clinics (Fig 1C and 1F)). Even though, the spatial distri-

butions of the voronoi regions differ in the test patterns, they both share the same 2D image

plane, and are therefore comparable to each other.

We treat each angle within a VF as a single pixel, such that the 30˚ tested area by the used

test pattern corresponds to a 61 by 61 pixel image. Hence the VF origin (0˚, 0˚) is situated at

image coordinate (31, 31). Note that left eye VFs are flipped to right eye configurations so to

maintain a single orientation.

Convolutional neural network classification

We make use of an automatic and CNN-generated classification of a VF as control or EG. Our

CNN takes as input a single voronoi representation of a VF and outputs 0 if the VF is from the

control group and 1 if it is from the EG group. The CNN structure consists of 7 layers (see Fig

2), formed by 3x3 convolutional layers and batch normalization layers. Additionally, max-

Fig 2. Proposed Convolutional Neural Network (CNN). The CNN takes as input a voronoi images (far left yellow square). Each stage corresponds to a layer in the

network. The type of the layer and the filter sizes are described below each layer whereas the number of filters and the size of the output are given above each layer.

Feature maps are finally averaged using a Global Average Max-Pooling layer. The final output score is obtained through two fully connected layers. All convolutional

layers and the first two fully connected layer are followed by ReLU activation. The output layer has sigmoid activation and output score represents the probability of

assigning the input visual field to the early glaucoma class.

https://doi.org/10.1371/journal.pone.0206081.g002
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pooling layers perform down scaling by factors two on the output of each convolutional layer.

A final binary decision is then produced using three fully connected layers to compute the VF

output score (i.e. the probability of being early glaucomatous). Note that by using a CNN that

explicitly uses convolution layers, we avoid the need to pre-smooth the voronoi representation

of VFs, as such smoothing is inherent to the CNN. In particular, the CNN will learn features

that are needed to achieve the defined classification task.

Saliency maps

Two types of saliency maps are computed to visualize what region of a VF is contributing to its

classification by the CNN. As proposed in [15], important pixels that contribute most to the

output score of a convolutional neural network can be found by computing the gradient of the

output with respect to the given input image. Let Oc(I) be the output score associated with the

class c and VI be the input voronoi image. Then, we compute a saliency map SC(VI) for the

input image VI by differentiating Oc with respect to the image I as in the following:

Sc VIð Þ ¼
@OcðVIÞ
@VI

; ð3Þ

where @y/@x refers to the gradient operator. The resulting gradient image reflects how much a

small change in a pixel affects the output score. Therefore, such gradient image is expected to

highlight important pixels or regions that bear relevant information with respect to the recog-

nition task. However, as discussed in [16], such gradient images are in general noisy, which

may be hard to interpret. Accordingly, we average the gradient images obtained by minimally

perturbed input images (e.g. by adding Gaussian noise to the input image). We thus compute

saliency maps as follows:

Ŝc VIð Þ ¼
1

n
Pn

1
ScðVI þ N 0;s2ð ÞÞ;

where n is the number of samples to average over, N(0,σ2) is Gaussian noise with zero mean

and standard deviation of σ. We refer to this map as SmoothGrad.

As our VF images are voronoi diagrams that are piece-wise constant, we further compute

the mean of the SmoothGrad saliency maps within a voronoi image region and create a differ-

ent map denoted Piece-wise computed by

SPc x; yð Þ ¼
1

nRl

P
ðx;yÞ2Rl

ŜcðVIÞðx; yÞ 8l; l ¼ 1; 2; . . . ; L ð4Þ

where Rl is the voronoi region corresponding to the location l, nRl is the number of pixels in

the Rl and L is the total number of locations in the pattern. Ŝcðx; yÞ and SPc ðx; yÞ represent the

(x,y) coordinates in the SmoothGrad and Piece-wise saliency maps, respectively.

Both SmoothGrad and Piece-wise maps are the same size as the voronoi image of a VF and

normalized so that the range of values is between 0 and 1 (0 = no influence, 1 = maximal influ-

ence in the VF).

Experimental setup

Data

Two perimetry data sets were used in this study. VFs of the first data set were prospectively col-

lected over a period of 10 years at the Glaucoma Center of Semmelweis University (Budapest,

Hungary) using an OCTOPUS 101 perimeter (Haag-Streit AG, Köniz, Switzerland) with the
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G1 program test pattern (Fig 1A) and the normal test strategy. 3110 VFs were acquired at

6-month intervals from a mixed population comprising 107 eyes (healthy, ocular hypertensive

[OHT], pre-perimetric and perimetric primary open-angle glaucoma eyes). The healthy eyes

had no optic nerve head damage and had reliable and reproducible normal OCTOPUS G1 VF

results, an MD< 2.0 dB, an LV< 6.0 dB, with no significantly decreased test point sensitivity

values and intraocular pressure consistently below 21 mm Hg. The under treatment OHT eyes

had normal optic nerve head and a normal VF with MD < 2.0 dB and LV < 6.0 dB. The under

treatment perimetric glaucoma eyes had definite glaucomatous neuroretinal rim loss, and reli-

able and reproducible VF defects typical with glaucoma (inferior and/or superior paracentral

or arcuate scotoma, nasal step, hemifield defect or generalized depression with MD> 2.0 dB

and LV> 6.0 dB). Last, the under treatment preperimetric glaucoma eyes had glaucomatous

neuroretinal rim loss reliable and reproducible normal OCTOPUS G1 VF results, an

MD< 2.0 dB, an LV< 6.0 dB. In the current analysis, to neutralize the age-related differences

between the eyes, the local defect values were used instead of absolute sensitivity thresholds.

The VFs used in the current study were collected during a prospective clinical investigation,

for which the research protocol was approved by the Institutional Review Board for Human

Research of Semmelweis University, Budapest. Written informed consent was obtained from

all participants before enrolment. All applicable institutional and governmental regulations

concerning the ethical use of human volunteers were followed. All participants were white

Europeans participating in a long-term imaging study in the Glaucoma Center of Semmelweis

University in Budapest. We refer this data set as BD data set.

The second dataset used in this study was collected at the Rotterdam Eye Hospital [19,20]

using a Humphrey Visual Filed Analyzer II (HFA, Carl Zeiss Meditec AG, Jena, Germany).

Both eyes from 161 patients, 139 of whom are glaucomatous, were tested using a white-on-

white 24–2 test pattern (Fig 1D), with the full-threshold program over 5 to 10 years, leading to

5108 visual fields in total. The diagnosis for each patient is provided within the dataset and the

diagnosis criteria is described in [19,20]. Total deviation and MD values per visual field are

also included in the data set which we refer to as RT.

The VFs used in the current investigation are categorized into two groups: control and

Early Glaucomatous (EG). The control group comprises VFs of the normal, ocular hyperten-

sive and pre-perimetric glaucoma eyes, all with MD< 6.0. The demographic statistics of the

control and EG groups, along with MD and sLV means and range values are given in Table 1

and Table 2 for BD and RT data sets, respectively.

Algorithm specifications

In this study, we use a 8-layer CNN model as seen in Fig 2, including 5 convolutional layers, 2

max-pooling layers, 1 global average pooling layer and 3 dense layers. Each convolutional layer

Table 1. Demographics of BD data set.

Group # Eyes # Visual Fields MD (all VFs, mean; min; max) sLV (all VFs, mean; min; max)

Control 114 1735 -0.31, -7.60;5.90 1.84; 0.90; 9.40

Early Glaucoma (EG) 87 532 3.16; -1.30;6.00 - 4.14; 1.10;12.60

https://doi.org/10.1371/journal.pone.0206081.t001

Table 2. Demographics of RT data set.

Group # Eyes # Visual Fields MD (all VFs, mean; min; max) sLV (all VFs, mean; min; max)

Control 44 244 -0.05, -3.20;5.74 1.79; 1.05; 6.16

Early Glaucoma (EG) 220 2279 2.31; -5.12;6.00 - 3.74; 0.91;12.30

https://doi.org/10.1371/journal.pone.0206081.t002
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applies 4 different 3x3 filters on its input, followed by a Rectified Linear Unit (ReLU) activa-

tion. Global average pooling is used after the last pooling layer, which outputs the average of

each feature map. Two fully connected layers with 32 hidden units is added after global average

pooling layer with an additional dropout layer with dropout factor of 0.5. Batch normalization

with a batch size of 32 is applied after each layer except the last hidden layer where we apply

dropout. Finally, we implemented an output layer of 1 hidden unit with sigmoid activation

function which yields the class probability (i.e. the probability of being early glaucomatous).

Using a training set of VF and disease classification pairs, the CNN parameters are com-

puted with the Adam optimizer [21] and the binary cross-entropy loss function. To study the

performance and variance of the method, we split all VFs into 10 random subsets, and train 10

separate CNNs. Each CNN is trained with 9 unique subsets and validated on the remaining

subset (i.e. 10-fold cross validation), making sure that no VF of a given subject appears in both

the training and validations set.

When creating SmoothGrad saliency maps, we used the number of samples n = 500 and

noise standard deviation σ = σr � (VImax−VImin) where σr is the noise level ratio, VImax and

VImin are the maximum and minimum values in the voronoi image VI respectively. We

accordingly used σr = 0.05 in our experiments.

Prediction accuracy

Accuracy of the novel CNN was compared to conventional classification by MD and sLV.

More specifically, MD is the negative of the arithmetic mean of sensitivity deviations, i.e.

MD ¼ � �rl ð5Þ

where �rl ¼ 1

L

PL
l¼1

rl, and sLV is square-root Loss Variance, i.e. the standard deviation of sensi-

tivity deviations as given by

sLV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

L � 1

PL
l¼1
ðrl � �rlÞ

2
:

r

ð6Þ

High MD and sLV values are often used as indicators of glaucoma and are complementary

information to each other regarding visual function. We therefore evaluated them separately

and combined as well, which we denote MD+sLV.

In addition, we compare these methods to a NN that has 2 fully connected hidden layers as

in the top layers of our proposed CNN. NN uses the threshold values with global indices, i.e.

MD and sLV as input to predict the VF group [8]. The predicted accuracy of each method was

evaluated using the Average Precision (AP) defined by,

AP ¼
R 1

0
PPVi � TPRi di; ð7Þ

where PPVi ¼
#true positives

#true positivesþ#false positives and TPRi ¼
#true positives

#true positivesþ#false negatives when applying a classifi-

cation threshold 0�i�1 both. As such, a perfect score is achieved when AP = 1. In order to

account for the variance due to neural network initializations, we trained our neural networks

(CNN, NN) 5 times for each fold and computed the AP score for each single trained CNN/

NN. The computed AP scores are then cumulated to calculate median and standard deviation

values.

Software

Data preparation, voronoi images, the CNN, saliency maps and analysis were performed using

Python (publically available at https://www.python.org/). In addition, the Keras [22] deep
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learning software library (publically available at https://keras.io/) was used for the CNN

implementation.

Results

CNN and NN parameters were optimized during the training phase and a subset of training

set was used as a validation set to avoid over-fitting of the two neural networks. The model

that reached the best validation loss was selected to evaluate our approach on a separate test

set. Computing a VF category and the two saliency maps with our CNN maps takes less than

0.1 second.

Figs 3 and 4 show the distribution of AP results associated with our CNN approach and

that of MD, sLV, MD+sLV and NN for the BD and RT data sets, respectively. For the BD data

set, the median AP scores over the 10 folds are 0.869±0.064, 0.775±0.137, 0.839±0.085, 0.843

±0.089 and 0.874±0.095 for MD, sLV, MD+sLV, NN and CNN, respectively. For the RT data

set, median AP scores are 0.986±0.023, 0.992±0.016, 0.987±0,017, 0.985±0.017 and 0.986

±0.019 for MD, sLV, MD+sLV, NN and CNN, respectively.

Figs 5 and 6 show randomly selected EG VFs, represented as voronoi images, for which the

CNN correctly predicted the VF group but where MD, sLV and MD+sLV made incorrect pre-

dictions (cut-off used the maximum value of F1-scores defined by PPVi � TPRi/(PPVi + TPRi)
over all values of i) for BD and RT data sets, respectively. For each case, the MD, sLV and

CNN output scores are reported above the VF.

Fig 7 present randomly selected VFs and their associated SmoothGrad and Piece-wise

saliency maps for BD and RT data sets. The red areas represent the regions that have greater

Fig 3. Average precision (AP) discrimination performance on BD data set. AP performance boxplots for MD, sLV,

sLV+MD, NN and our CNN approach. Median values are shown in orange.

https://doi.org/10.1371/journal.pone.0206081.g003
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influence on the CNN decision score than the other regions. Figs 8 and 9 show similar ran-

domly selected examples for EG VFs, which are incorrectly indicated by the CNN as control.

Discussion

In the current investigation we have shown that using a fully automated CNN to classify VFs

into a control or an EG group via a voronoi image representation is more effective than using

either a NN, MD, sLV and their combination for the same purpose.

As a general conclusion, the new approach investigated here, yielded consistently higher

AP performances for the two data sets with different test patterns. sLV, which characterizes

the homogeneity or inhomogeneity of the VF, and becomes impaired early in the glaucoma-

tous progression, showed the worst performance and the highest variance in the BD data set

while achieving highest AP performance on the RT data set, showing inconsistency in its per-

formance across both data sets. This unexpected result may be explained by the fluctuations in

patient responses[23]. However, the combination of MD with sLV improved the classification

performance compared to that of MD alone. The improved performance of the CNN com-

pared to that of the NN shows that spatial information over multiple region sizes results in

higher discrimination capabilities, even if both neural networks use the same optimization

method to train their respective parameters.

The variance achieved by the CNN method over the 10 folds was in general relatively large

for both data sets whereas the difference was very small on the RT data set. This is due to some

folds performing comparatively worse than the bulk of the folds with the CNN requiring a

training set to establish the parameters of the model. This is borne out by work from others

Fig 4. Average precision (AP) discrimination performance on RT data set. AP performance boxplots for MD, sLV, sLV

+MD, NN and our CNN approach. Median values are shown in orange.

https://doi.org/10.1371/journal.pone.0206081.g004
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[14,24], and larger training data sets would reduce the variance of our CNN due to model

parameters being less dependent on individual VFs.

The examples shown in Figs 5A, 5B, 6A and 6B suggest that the CNN is capable of detecting

localized defects in VFs from different patterns. In Fig 5A and 5B, EG cases from the BD data-

set were correctly identified by both sLV and the CNN (probability of early glaucoma is 0.85

and 0.89, respectively), but incorrectly classified with an MD cut-off of 2.00. In both cases, the

sLV values are elevated (4.10 and 4.50, respectively) due to VF inhomogeneity. Similarly, EG

cases from the RT data set, shown in Fig 6A and 6B, could be correctly classified by the CNN

(probability 0.79 and 0.47) even though the EG samples are relatively harder with very low

Fig 5. Correctly CNN-identified early glaucoma examples from the BD data set. For each example (a-f), the MD and sLV values are given above the voronoi visual

field images. Black circles depict the blind spot. The probability of being early-glaucoma, estimated by the CNN is also given for each case. (a-b) Examples where an MD

cut-off would lead to incorrect classification (cut-off values shown above each case). (c-d) Examples where an sLV cut-off would lead to incorrect classification (cut-off

values shown above each case). (e-f) Examples where an MD+sLV cut-off would lead to incorrect classification (cut-off values shown above each case). In each case, the

CNN detects the correct classification.

https://doi.org/10.1371/journal.pone.0206081.g005
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MD (-2.21 and -3.09) (Fig 5B). The low MD values suggest that this inhomogeneity has mar-

ginal influence on the global VF sensitivity, highlighting the challenge of detecting EG. How-

ever, these examples show that the CNN learned to associate EG to patterns that manifest as

local inhomogeneity. At the same time, Figs 5A–5C, 6C and 6D highlight that the CNN also

learned to take overall deviations into account. In the BD data set (Fig 5C and 5D), the CNN

and MD cut-offs (1.30 and 1.40, respectively) lead to correct classification since the MDs are

slightly higher than expected in normal control eyes (2.10 and 1.80, respectively). Here, VF

inhomogeneity is negligible since the sLV scores are within normal values. We observe the

same trend for the RT data set (Fig 6C and 6D) where the sLV did not suffice to identify EG

Fig 6. Correctly CNN-identified early glaucoma examples from the RT data set. For each example (a-f), the MD and sLV values are given above the voronoi visual

field images. Black circles depict the blind spot. The probability of being early-glaucoma, estimated by the CNN is also given for each case. (a-b) Examples where an MD

cut-off would lead to incorrect classification (cut-off values shown above each case). (c-d) Examples where an sLV cut-off would lead to incorrect classification (cut-off

values shown above each case). (e-f) Examples where an MD+sLV cut-off would lead to incorrect classification (cut-off values shown above each case). In each case, the

CNN detects the correct classification.

https://doi.org/10.1371/journal.pone.0206081.g006
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cases with diffuse defects, while MD and CNN were successful. This suggests that the CNN is

also able to identify EG cases that have diffuse defects with marginally elevated MD values.

Figs 5E, 5F, 6E and 6F show more challenging cases where the CNN correctly classifies EG

from both BD and RT data sets, while the combined MD+sLV with respective cut-offs leads to

incorrect classification. Even when both the MD and sLV values are within normal ranges, the

CNN correctly identified the EG cases.

Fig 7 highlights 8 different VF scores correctly classified by the CNN: two control from the

BD data set (a-b), and the RT data set (c-d); two EG cases from the BD data set (e-f) and the

RT data set (g-h). We note that the SmoothGrad maps contain significantly more noise than

the Piece-wise maps. This is expected since the latter accumulates the values of the former over

voronoi regions. In addition, the regions that are highlighted by the CNN (red regions) are not

pre-set or constant for different VFs. That is, for each VF, the CNN used different combina-

tions of locations to make the assessment.

For the control VFs in Fig 7A–7D, the SmoothGrad maps are often characterized by impor-

tant regions that have large spatial coverage. More specifically, the control VFs appear to have

SmoothGrad maps that are diffuse over the entire 30˚ of the VF, and attribute importance to

many locations. Conversely, the maps associated with EG VFs are more spatially focused on

few locations (Fig 7E–7H). One explanation for this difference is that for control VFs, the

CNN needs to attribute importance to many locations so to verify that local defects are not

present anywhere. In contrast, it is potentially enough to identify only a single defect region to

classify the VF as early glaucoma. Of clinical significance is the finding that the regions

highlighted in Fig 7E and 7H spatially correspond to the arcuate-like and nasal step paracentral

scotoma areas, typical for early glaucoma[25,26].

For application purposes, the two different maps have their respective advantages: Piece-

wise maps highlight the importance of each tested location by averaging SmoothGrad pixel

influences over voronoi regions. However, this procedure may bias the importance of different

Piece-wise regions because certain voronoi regions are larger than others. Conversely,

SmoothGrad highlights each individual pixel in the voronoi image and suffers from noisy

highlights. This suggests that considering both maps in combination is the most appropriate

method to interpret the saliency map results.

The proposed CNN is not free from error. Figs 8 and 9 show two EG VFs that are incor-

rectly classified for the BD and RT data sets, respectively. Considering saliency maps associated

to VFs from the BD data set in Fig 8, we observe that for the case in (a), defects on the upper

hemi-field could be partially highlighted in the associated SmoothGrad map. In the case of Fig

8B, the CNN failed to focus on appropriate defect areas, thus resulted in much lower probabil-

ity (0.12) than the cut-off value (0.59). As for cases in the RT data set shown in Fig 9A and 9B,

SmoothGrad maps appear to highlight relevant regions that have low sensitivities whereas

combinations of defect and non-defect locations were emphasized in Piece-wise map. Yet, the

CNN could not accurately distinguish those VFs EG cases. This could be due to the complexity

of the defect regions, where several isolated low-valued small regions are observed and are

harder to correctly discriminate from inherent noise.

The study presented here has limitations and more extensive studies are required to con-

firm our initial findings, with future work focusing on two main areas. First, the need for large

training cohorts for the CNN to learn a classification is essential for optimal performance. This

would include training our method on extensive amounts of data arch. Using a greater amount

of data, the complexity of the CNN (i.e. the number of layers of the model) can be increased,

and concomitantly the accuracy will increase [27,28]. The second limitation is the current clin-

ical criterion used to identify early-glaucoma subjects (i.e. considering only glaucomatous VFs

having MD less than 6.0 dB). This criterion may in fact be incorrect. Our proposed CNN may
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provide a further improved detection of early glaucomatous VFs if it is trained using a further

refined definition of EG.

Fig 7. CNN-computed saliency maps. Eight visual fields correctly discriminated by the CNN: control cases from the

BD data set with G program test pattern (a-b) and the RT data set with 24–2 test pattern (c-d); EG cases from the BD

data set with G program test pattern (e-f) and the RT data set with 24–2 test pattern (g-h). For each case, both the

SmoothGrad and Piece-wise saliency maps are shown. Values in the maps range from 0 to 1, where 0 indicates the

pixel or region has no impact on the CNN decision while 1 indicates a region with maximal importance.

https://doi.org/10.1371/journal.pone.0206081.g007

Fig 8. Incorrectly classified visual fields from the BD dataset. Illustration of two cases where the CNN fails to correctly identify early-glaucomatous visual fields, along

with the associated SmoothGrad and Piece-wise saliency maps. MD and sLV values for each case are provided, as well as the probability of being early-glaucomatous

estimated by the CNN. The corresponding cut-off values are given in parenthesis for each type of scores.

https://doi.org/10.1371/journal.pone.0206081.g008
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In conclusion, in the current study we proposed a new CNN classifier to discriminate auto-

matically between normal control VFs from EG VFs. We found that our approach performed

better than the standard global indices used for clinical decision making. In addition, our pro-

posed method outperformed a NN that does not explicitly leverage spatial information. We

also emphasize that in such disease diagnosis problems, the need for interpretable results as

opposed to single scores is critical and a main motivation for the introduction of the proposed

saliency maps to highlight what regions of the VF the CNN focuses on during classification.

The qualitative evaluation of these maps appears to correlate to regions that are clinically

Fig 9. Incorrectly classified visual fields from the RT dataset. Illustration of two cases where the CNN fails to correctly identify early-glaucomatous visual fields, along

with the associated SmoothGrad and Piece-wise saliency maps. MD and sLV values for each case are provided, as well as the probability of being early-glaucomatous

estimated by the CNN. The corresponding cut-off values are given in parenthesis for each type of scores.

https://doi.org/10.1371/journal.pone.0206081.g009
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relevant. Our results represent a promising step for the integration of automated glaucoma

detection methods in routine clinical practice and for research purposes. If developed further

into a validated classification model, our proposed CNN method may gain a role in VF-based

glaucoma screening in routine clinical care.

Supporting information

S1 Dataset. The is the file including data sets used in this work. Training, validation and test

splits are given separately.
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Formal analysis: Şerife Seda Kucur, Raphael Sznitman.

Funding acquisition: Raphael Sznitman.

Methodology: Şerife Seda Kucur, Raphael Sznitman.

Project administration: Raphael Sznitman.

Software: Şerife Seda Kucur.

Supervision: Raphael Sznitman.

Validation: Şerife Seda Kucur.

Visualization: Şerife Seda Kucur.

Writing – original draft: Şerife Seda Kucur.

Writing – review & editing: Gábor Holló, Raphael Sznitman.
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