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a b s t r a c t 

Perimetry is a non-invasive clinical psychometric examination used for diagnosing ophthalmic and neuro- 

logical conditions. At its core, perimetry relies on a subject pressing a button whenever they see a visual 

stimulus within their field of view. This sequential process then yields a 2D visual field image that is crit- 

ical for clinical use. Perimetry is painfully slow however, with examinations lasting 7–8 minutes per eye. 

Maintaining high levels of concentration during that time is exhausting for the patient and negatively 

affects the acquired visual field. We introduce PASS , a novel perimetry testing strategy, based on rein- 

forcement learning, that requires fewer locations in order to effectively estimate 2D visual fields. PASS 
uses a selection policy that determines what locations should be tested in order to reconstruct the com- 

plete visual field as accurately as possible, and then separately reconstructs the visual field from sparse 

observations. Furthermore, PASS is patient-specific and non-greedy. It adaptively selects what locations 

to query based on the patient’s answers to previous queries, and the locations are jointly selected to 

maximize the quality of the final reconstruction. In our experiments, we show that PASS outperforms 

state-of-the-art methods, leading to more accurate reconstructions while reducing between 30% and 70% 

the duration of the patient examination. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Estimating a subject’s capacity to sense light is critical for diag-

osing numerous ocular and neurological conditions. In the case

f glaucoma, an eye condition that affects over 60 million peo-

le worldwide, the need to quantify how well patients perceive

ight is paramount to monitor the disease over years ( Racette et al.,

016 ). Given the ageing world population and the growing number

f glaucoma patients, the need for reliable methods is a significant

ublic health concern. 

To measure light perception, perimetry is the standard-of-care

 Racette et al., 2016; Heijl et al., 2012 ). This non-invasive functional

ye examination automatically quantifies a subject’s sensitivity to

ight across the field of view. In most cases, the central 30 ◦ of the

isual field is evaluated by sequentially projecting brief light stim-

li of different brightness to an observer who fixates a central ref-

rence point. When a subject perceives a stimulus, they press a

utton to confirm the observation and a new stimulus is presented.

y presenting stimuli at different regions of the visual periphery,
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erimetry yields a 2D image, or visual field ( Fig. 1 ), quantifying the

bility to perceive light at each location. Visual fields are then the

asis for diagnosis and treatment ( Racette et al., 2016 ). 

While safe and inexpensive, perimetry suffers from a number

f limitations for both patients and clinicians ( Racette et al., 2016 ).

n particular, the examination requires the patient to concentrate

or up to 7–8 minutes per eye ( King-Smith et al., 1994; Weber and

limaschka, 1995; Bengtsson et al., 1998 ). For patients typically 60

o 90 years old, this is exhausting, unpleasant and leads to high

rop-out rates in scheduled bi-annual monitoring appointments.

ore importantly, the quality and reliability of the visual field de-

ends on maintained high attention of the patients throughout the

xam. Long examinations time cause an increase in false positive

nd false negative responses, thus significantly reducing the qual-

ty of the examination. This in turn makes treatment planning by

he clinician more challenging ( Gonzalez-Hernandez et al., 2005;

all et al., 2004 ). As such, there is an important need to speed up

xaminations in order to improve the overall quality of care. 

Yet at the heart of perimetry lies an inherent accuracy vs. speed

rade-off. That is, accurate visual fields could be produced if ev-

ry location of the visual field were tested multiple times with

ifferent intensities. Doing so would however require unbearably

ong examinations. Conversely, testing just a few locations with no

https://doi.org/10.1016/j.media.2019.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.03.002&domain=pdf
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180 Ş .S. Kucur, P. Márquez-Neila and M. Abegg et al. / Medical Image Analysis 54 (2019) 179–192 

(a) (b) (c) (d)

Fig. 1. (a) An OCTOPUS 900 perimeter (Haag-Streit AG, Switzerland), (b) A 1D schematic representation of the perimetry principle (generalizes to 2D). The patient eye (left) 

focuses on a fixation point in the perimeter (black point). Light of different intensities are sequentially shown to L = 3 locations in the perimeter (right) that stimulate 

photoreceptor regions in the patient’s retina. A light sensitivity threshold at each evaluated photoreceptive region in the retina is recorded by the machine. In this example, 

two low thresholds (in red) and one high threshold (blue) are illustrated. (c) A 2D visual field map from a healthy subject acquired using a 24-2 pattern with L = 54 tested 

locations. The warm to cool color scale corresponds to high to low sensitivity thresholds. (d) A G-pattern visual field with L = 59 tested locations. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4  
intensity variability would be extremely fast but yield clinically un-

usable visual fields. 

Recent methods have been proposed to tackle this trade-off

more efficiently. Chong et al. (2014, 2016) leverage the spatial re-

lations of individual locations to improve the overall accuracy of

visual fields. These methods rely on the fact that anatomical struc-

tures and pathological factors are indicators of the co-dependency

between values at different locations ( Weber et al., 1990; Anton

et al., 1998 ). While potentially more precise, these methods re-

main slow, as each location still needs to be evaluated. As was later

shown in ( Wild et al., 2017; Kucur and Sznitman, 2017 ), exhaus-

tive testing is unnecessary as the co-dependencies between loca-

tions can be exploited to reduce the number of evaluated locations.

In particular, unobserved locations can be estimated using Markov

Random Fields ( Wild et al., 2017 ) or sparse reconstruction methods

( Kucur and Sznitman, 2017 ). However, in terms of what locations

to select, both methods are greedy in that they only pick what lo-

cation should be next, either once for all eyes ( Kucur and Sznit-

man, 2017 ) or dynamically during the examination ( Wild et al.,

2017 ). This yields locations that do not truly take advantage of the

visual field co-dependencies and yields large inaccuracies at loca-

tions that have not been evaluated. Ultimately this strongly limits

their usability in practice. 

We present a Patient Attentive Sequential perimetry Strategy

( PASS ). PASS has three properties to overcome the above short-

comings: it is (i) sparse , examining only a limited number of the

visual field locations; it is (ii) patient-adaptive , selecting the se-

quence of locations to examine in an online manner based on the

previous answers from the patient; and it is (iii) non-greedy , pick-

ing the locations that jointly yield the most accurate visual field

within the given duration of the exam. To do this, we separate the

problem into (1) a visual field estimation problem and (2) a loca-

tion selection problem. (1) enables the sparsity property, while (2)

leads to the patient-adaptiveness and non-greediness properties. For

(1) we propose to use a Neural Network (NN) or Least Squares ap-

proach to reconstruct the visual field from partial observations that

are retrieved sequentially, while for (2) we use a separate NN that

is trained to predict the best locations to pick given the history

of observations. Our method then iterates between reconstructing

visual fields from partial observations to selecting the next loca-

tion to observe. As such, our work is a Reinforcement Learning in-

stance ( Sutton and Barto, 1998 ) and is related to attention models

( Ranzato, 2014 ). Our main contributions are threefold: 

• The presented framework is the first to show a policy-gradient

reinforcement learning approach for the task of visual field re-

construction from sparse observations. At each time point of

our sequential method, we determine what location to evalu-
ate, using previous locations and the current best estimate of

the entire visual field. 
• Given a predefined number of locations to be evaluated, we

show how to learn what locations need to be selected to ap-

proximate the global optimum. This is in stark contrast to state-

of-the-art methods that exclusively rely on one-step look ahead

criteria to select the following location to test. 
• We compare the use of two different sparse reconstruction

methods for the task of visual field estimation. The first relies

on a sparse linear model, while the second involves a NN-based

approach. 

We show in our experimental section that PASS provides su-

erior performances compared to state-of-the-art methods on two

ifferent datasets acquired with different perimeters. Ultimately,

e show that our method provides better results with shorter ex-

mination times. 

The remainder of this paper is organized as follows: In

ection 2 , we briefly describe perimetry and existing related works.

n Section 3 , we outline our proposed framework and thoroughly

valuate it in Section 4 . We conclude with final remarks in

ection 5 . 

. Related work 

.1. Principles of perimetry: A brief overview 

Perimetry quantifies the ability of retinal photoreceptors to per-

eive light ( Racette et al., 2016 ). The basic principle is to present

hort (i.e. 200 ms) light stimuli of different intensities (in deci-

els) so that the brightness with which perception is detected 50%

f the time can be estimated. This brightness value is called the

ensitivity threshold and is a noisy measurement. Healthy and de-

eriorated retinal locations typically have low and high sensitivity

hresholds, respectively. 

To collect sensitivity threshold estimates over multiple retinal

ocations, the subject fixates a central point on a screen while the

timuli are presented. By varying where the stimuli appear in the

eld of view, sensitivity thresholds at different retinal locations can

hen be estimated (see Fig. 1 b). For a given eye, this ultimately

ields a 2D grid of sensitivity threshold values known as a visual

eld (VF) (see Fig. 1 c- 1 d). Modern devices automatically evaluate

0–60 locations per eye using a variety of different coarse grid pat-

erns. For more information on perimetry, we refer the reader to

 Racette et al., 2016 ). 

Given this setting, we can treat VFs as images whose pix-

ls are sensitivity thresholds (i.e. with values ranging between 0–

0 dB) as shown in Fig. 1 c and d. Since perimeters can stimulate
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hotoreceptive regions in any order, with any given intensity, an

mportant characteristic of the VF acquisition process is that each

ocation can be observed independently from each other. In ad-

ition, the acquisition time is linear in the number of locations

valuated. This fact has led researchers to develop different test-

ng strategies that choose what locations to stimulate, with what

ntensities and in what order, so to estimate VFs as quickly and

ccurately as possible. This problem is the focus of the present

ork and we describe the most relevant existing methods in what

ollows. 

.2. Perimetry testing strategies 

Early research on speeding up perimetry focused on explor-

ng methods that reduced the number of stimuli used for a sin-

le photoreceptor region at a time. These included methods that

sed fixed and varying intensity testing intervals ( Racette et al.,

016; Weber and Klimaschka, 1995 ), as well as Bayesian testing

trategies ( King-Smith et al., 1994; Bengtsson et al., 1998; Tyrrell

nd Owens, 1988; Anderson and Johnson, 2006 ). In some cases,

0%-80% speedup gains are achieved when compared to brute-

orce testing that lasted over 15 minutes per eye. In this work, we

se the clinically validated varying intensity testing method pro-

osed in Weber and Klimaschka (1995) to determine the sensitiv-

ty thresholds at a specific location. 

To further improve the acquisition speed, other methods used

F values of neighboring locations to reduce the number of stim-

li presentations. The Dynamic Strategy (DS) ( Weber and Kli-

aschka, 1995 ) and the Tendency Oriented Perimetry (TOP) strat-

gy ( Morales et al., 20 0 0 ), use neighboring locations to seed

nitial stimuli values at yet to be tested locations. While the

ormer fully estimated sensitivity thresholds before testing neigh-

oring locations, the latter stimulated each location only once,

ielding very fast VFs with low-accuracy ( De Tarso Ponte Pierre-

ilho et al., 2006 ). 

More recent methods have looked to characterize VF locations

sing Markov Random Fields (MRF) and Bayesian inference to

stimate VF values. Denniss et al. (2013) and Ganeshrao et al.

2015) both proposed similar schemes that used graph priors de-

ived from anatomical retinal structures. While showing improve-

ents in testing efficiency, the overall gains are limited and the

eed to explicitly model the graph structure is complex in itself.

OANNA ( Chong et al., 2014 ) improved this by dynamically de-

ermining which locations to test. SWeLZ ( Rubinstein et al., 2016 )

nd SEP ( Wild et al., 2017 ) also used MRFs to incrementally esti-

ate VFs and dynamically select what locations to evaluate based

n sparse estimates. While both methods brought speed improve-

ents, their performances on datasets with wide ranges of sub-

ects (i.e. datasets with healthy and pathological subjects) are infe-

ior due to difficulties in estimating model parameters. 

Sparse sensing ( Donoho, 2006 ) techniques have been heavily

sed in image reconstruction problems, especially in medical ap-

lications such as Medical Resonance Imaging ( Lai et al., 2016; Rav-

shankar and Bresler, 2011; Haldar et al., 2011; Huang et al., 2011;

hen et al., 2018 ). By inspring from the same image reconstruction

dea, sparse sensing was used as the basis of the Sequentially Opti-

ized Reconstruction Strategy (SORS) ( Kucur and Sznitman, 2017 ).

ere the problem was formulated as a sparse reconstruction prob-

em where incremental basis matrices were used to estimate the

F after a location was observed. While being almost parameter-

ree and computationally simple, the order in which locations are

ested is fixed for all patients no matter the state of the evalu-

ted VF. We show in our experiments that this fixed testing policy

s suboptimal and results in poor reconstructions at non-evaluated

F locations. 
.3. Reinforcement learning and attention models 

Our approach is related to Reinforcement learning (RL) ( Sutton

nd Barto, 1998 ) and Attention Models ( Ranzato, 2014; Mnih et al.,

014; Xu et al., 2015 ). In RL, an agent is tasked to learn how to

aximize a numerical reward by sequentially interacting with an

nvironment . Recent progress in RL has been achieved in a vari-

ty applications such as strategies for playing Atari ( Mnih et al.,

015 ) or Go ( Silver et al., 2017 ). Various computer vision meth-

ds for object localization ( Caicedo and Lazebnik, 2015 ), object de-

ection ( Mathe et al., 2016 ), classification ( Wiering et al., 2011 )

ave also used RL approaches as well. In medical image comput-

ng, the works of Sahba et al. (2008) , Chitsaz and Seng Woo (2011) ,

nd Wang et al. (2013) for image segmentation, of Ghesu et al.

2016) for localization or of Neumann et al. (2015, 2016) for multi-

hysics computational model personalization stand out. 

In the context of sequential decision problems, Attention Mod-

ls ( Ranzato, 2014; Mnih et al., 2014; Xu et al., 2015 ) have gained

uch interest. The underlying idea behind such models is to learn

here to sequentially focus computational resources in an image

o to gather as much information towards a specific task (e.g. im-

ge classification). This implies ignoring irrelevant parts of an im-

ge while concentrating on its most important parts.The Recurrent

ttention Model (RAM) ( Mnih et al., 2014 ) is perhaps the most rel-

vant model to ours. Here, the authors propose a recurrent neural

etwork (RNN) to process the history of states and actions to de-

ide which local region in an image needs to be ‘attended’ in order

o correctly classify the image content. 

Similar to the RAM model, we introduce a framework for se-

uential decision making in the context of perimetry testing: our

roposed method sequentially attends a number of VF locations,

sing previously visited locations to reconstruct the VF. As in Mnih

t al. (2014) , we train our method to minimize the final loss which

n our case is the VF reconstruction loss. 

. Patient-attentive sequential strategy 

We formulate PASS as a sequential experimental design prob-

em. Our method looks to provide the best possible VF reconstruc-

ion from noisy observations acquired from a limited number of

ocations. Our key insight is that by selecting the best locations for

ach patient, better reconstructions can be attained in shorter ex-

mination times. In what follows, we begin by specifying the PASS
odel. We then describe how to train this model using data and

hen specify the implementation choices we have made. 

.1. Model 

To acquire a VF from a given eye, our method proceeds iter-

tively for T steps. At each time step t < T , a measured VF loca-

ion, � t , is selected from the set � = { 1 , . . . , L } of possible loca-

ions. We denote the patient examined as a function Q : � → R

hat when queried at a location � ∈ �, returns a noisy sensitivity

hreshold q � ∈ R from that location. Note that the function Q is

ssumed to be non-deterministic as a patient may respond differ-

ntly even when queried multiple times at the same location. At

ime step t , we denote the history of observations received so far

s h t ∈ (R ∪ {•} ) L . Specifically, the � -th element of h t contains q � if

ocation � was queried, or the masked value • if the location has

ot yet been observed. Our method performs one measurement at

 time, hence h t contains L − t masked values at any time step t . 

After each observation, we estimate the complete VF, denoted

ˆ 
 t ∈ R 

L , using a reconstruction function f : R 

L → R 

L that receives

s input the history of observations h t . To select the next loca-

ion to evaluate, we use a policy function π that also uses the his-

ory of observations h t , together with the reconstructed VF ˆ y t , to
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Fig. 2. Overview of the proposed method. At time step t , the policy π takes the re- 

construction ̂  y t , as well as the history of observations h t and produces a probability 

distribution over the locations. S samples one location � t+1 from this distribution, 

which is queried to the patient Q , and yields an observation q . The history h t is 

updated with the observation q and fed to the reconstruction function f to produce 

a new reconstruction ˆ y t+1 . The // symbol indicates the switch from one iteration to 

the next one. Algorithm 1 formalizes this procedure. 
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1 The greedy policy would need to satisfy Bellman’s Optimality Principle 

( Bellman, 1957 ). 
decide which location � t+1 to query at the next time step t + 1 .

This scheme is repeated T times, and we refer to this as the exam-

ination horizon . Fig. 2 depicts our model and Algorithm 1 formal-

izes this procedure. Here we use the notation h � � q to describe a

vector equal to h but with the � -th element set to q . 

Algorithm 1 Patient Attentive Sequential Strategy (PASS). 

Input: Patient Q , policy function π , reconstruction function f 

Output: Reconstruction of the VF ˆ y T 
h 0 ← (•, . . . , •) 
ˆ y 0 ← f (h 0 ) 

for t in (0 , . . . , T − 1) do 

Sample next location � t+1 ∼ π(· | (h t , ̂  y t )) 

Query location from patient q � t+1 
← Q (� t+1 ) 

Update history h t+1 ← h t �� t+1 
q � t+1 

Reconstruct VF ˆ y t+1 ← f (h t+1 ) 

end for 

return 

ˆ y T 

The key component of our method is the policy function π ,

that selects locations to query next. In particular, our policy func-

tion depends on the tuple s t = (h t , ̂  y t ) which we refer to as the

current state of our model. If we let � be the set of all possible

states, a policy function is formally defined as π : �×� → [0, 1],

that takes the state s t and builds a probability distribution over

�. Thus, π ( � | s t ) is the probability of selecting the location � when

the state is s t . A non-deterministic sampling procedure, denoted

as S in Fig. 2 , then chooses the location � t+1 from this probability

distribution. 

In the following subsection, we describe how to learn the policy

function from training data. 

3.2. Training 

Determining a good policy function is not trivial, as we wish

to select locations that provide the best VF reconstruction after T

iterations. Given that each selection depends on the history of pre-

vious selection, the main difficulty lies in attributing the value of

individually picked locations when only observing the final VF re-

construction. 
To this end, we will use a training phase to minimize a loss

unction over a training dataset D = { (q 

(i ) , y (i ) ) | i = 1 , . . . , N} con-

isting of many pairs of noisy sensitivty thresholds q 

(i ) ∈ R 

L and

he corresponding true VF values y (i ) ∈ R 

L . Note that the noisy ob-

ervations q serve to simulate the answers from the patient at

raining time. To evaluate the loss function for a pair ( q, y ), we

ompare the ground-truth y to the final reconstruction 

ˆ y T gener-

ted by our strategy in Algorithm 1 . We can also quantify the dif-

erence between 

ˆ y T and y using the mean squared error (MSE), 

 = ‖ ̂

 y T − y ‖ 

2 
2 , (1)

hat we refer to as the reconstruction penalty . Note that computing

ˆ 
 T involves sampling locations from the policy function, thus both

he reconstruction 

ˆ y T and the penalty P are in fact random vari-

bles that depend on the stochastic policy π . We thus define our

oss as the expected penalty, 

 (q , y ) = E � ∼π [ P ] , (2)

here the expectation is taken over entire sequences of T loca-

ions. In contrast, Kucur and Sznitman (2017) defines their MSE

enalty with respect to ˆ y t+1 , so that their expectation is only

aken over individual locations. While computationally simple,

uch greedy or one-step lookahead strategies are rarely globally

ptimal with respect to ˆ y T 
1 For this reason, the goal of our training

hase is to find a policy function π ∗ such that 

∗ = arg min 

π
E (q , y ) ∼D [ L (q , y )] , (3)

here the loss is averaged over the training dataset. 

To solve Eq. (3) , we resort to a function approximation ( Sutton

t al., 20 0 0 ). In particular, we model the policy function πθ as a

eural network with parameters θ and use a standard gradient-

ased method to minimize the loss. This requires computing the

radient of the expected penalty w.r.t. the parameters θ . The ex-

ected penalty however can not be computed in practice, as it

ould involve running over all possible sequences of T tested lo-

ations. Instead, we resort to Monte-Carlo sampling, whereby sam-

les can be obtained from Algorithm 1 to compute approximations

o the expected penalty. Unfortunately, doing so removes all dif-

erentiable structure w.r.t. θ and it is not possible to compute the

radient of the expected penalty from the Monte-Carlo samples.

his is a well-known problem in reinforcement learning and can

e solved using the REINFORCE rule ( Williams, 1992 ). In our case,

he gradient of the loss can be rewritten as 

∂ 

∂θ
L = 

∂ 

∂θ
E � ∼πθ

[ P ] = 

∂ 

∂θ

∑ 

� 1 , ... ,� T 

P 

T −1 ∏ 

t=0 

πθ (� t+1 | s t ) 

= 

∑ 

� 1 , ... ,� T 

P 
∂ 

∂θ

T −1 ∏ 

t=0 

πθt = 

∑ 

� 1 , ... ,� T 

P 

T −1 ∏ 

t=0 

πθt ·
∂ 

∂θ
log 

T −1 ∏ 

t=0 

πθt 

= E � ∼πθ

[ 

P 
∂ 

∂θ

T −1 ∑ 

t=0 

log πθ (� t+1 | s t ) 
] 

, (4)

here we have used the fact that ∂ 
∂θ

p θ = p θ · ∂ 
∂θ

log p θ for any

unction p θ , and πθ t is shorthand for πθ (� t+1 | s t ) . Eq. (4) provides

 way to obtain the gradient of the expected penalty, which can-

ot be computed directly, as the expectation of a gradient. This can

owever be approximated with Monte-Carlo sampling, 

 � ∼πθ

[ 

P 
∂ 

∂θ

T −1 ∑ 

t=0 

log πθt 

] 

≈ 1 

M 

M ∑ 

m =1 

P 
˜ � 
(m ) 

∂ 

∂θ

T −1 ∑ 

t=0 

log πθ ( ̃  � 
(m ) 
t+1 

| s t ) , 

(5)
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Table 1 

Architecture for the policy network and the reconstruction network. 

Policy network Reconstruction network 

History stream Reconstruction stream 

Input: h t Input: ˆ y t Input: h t+1 

linear (2 L × 512) Linear ( L × 512) Linear (2 L × 256) 

ReLU ReLU ReLU 

Linear (512 × 512) Linear (512 × 512) Linear (256 × 256) 

ReLU ReLU ReLU 

Concatenation Linear (256 × 256) 

Linear (1024 × 256) ReLU 

ReLU Linear (256 × L ) 

Linear (256 × L ) 

Softmax 
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here M is the number of samples and 

˜ � 
(m ) 

is a sequence of T

ocations sampled from πθ . Note that this is an instance of a policy

radient method ( Sutton et al., 20 0 0 ) and that in practice we set the

umber of Monte-Carlo samples M = 1 . 

In addition, to reduce the variance of the REINFORCE estimator,

t is a common to subtract a baseline b value from the penalty P

 Williams, 1988 ): 

∂ 

∂θ
L ≈ 1 

M 

M ∑ 

m =1 

[ (
P 

˜ � 
(m ) − b 

) ∂ 

∂θ

T −1 ∑ 

t=0 

log πθ ( ̃  � 
(m ) 
t+1 

| s t ) 
] 

. (6) 

ere, the optimal choice for b is the expected penalty ( Williams,
988 ), which is unknown and must be estimated. We do this by
sing a running average over all previously obtained penalties. We
lso include the entropy of the policy function, H [ πθ ( · | s t )], as part
f the gradient computation, 

∂ 

∂θ
L ≈ 1 

M 

M ∑ 

m =1 

[ (
P 

˜ � 
(m ) − b 

) ∂ 

∂θ

T −1 ∑ 

t=0 

log πθ ( ̃  � 
(m ) 
t+1 

| s t ) − λ
∂ 

∂θ

T −1 ∑ 

t=0 

H [ πθ (· | s t ) ] 
] 

,

(7) 

here λ> 0 is the weight of the entropy term. This extra term has

een used before ( Xu et al., 2015 ) as a manner of increasing the

ntropy of the distributions generated by the policy. This avoids

remature convergence and encourage exploration of the space of

ocations. 

Algorithm 2 shows our implementation of Eq. (7) whereby the

rad( a, b ) operator returns the gradient of a w.r.t. b . This can be

asily implemented with an automatic differentiation library (e.g.

yTorch ( Paszke et al., 2017 )). We use the special notation � to

ndicate a detached assignment that disables gradient computation

y blocking backpropagation through it. During training, we itera-

ively call Algorithm 2 feeding random samples from D to compute

pproximations to the gradient of the loss, and use these gradients

o update the parameters θ of the policy function. In the follow-

ng two subsections, we specify the details of both the policy and

econstruction functions. 

lgorithm 2 Computation of loss gradient with Monte-Carlo sam-

ling. 

nput: Sample (q , y ) ∈ D, policy function πθ , reconstruction func-

tion f , baseline b 

utput: Monte-Carlo approximation to gradient ∂ 
∂θ

L , updated

baseline b

1: h 0 � (•, . . . , •) , ˆ y 0 � f (h 0 ) 

2: logp ← 0 , entr ← 0 

3: for t in (0 , . . . , T − 1) do 

4: Sample next location � t+1 ∼ πθ (· | (h t , ̂  y t )) 

5: logp ← logp + log πθ (� t+1 | (h t , ̂  y t )) 

6: entr ← entr + H 

[
πθ (· | (h t , ̂  y t )) 

]
7: Update history h t+1 � h t �� t+1 

q � t+1 

8: Reconstruct VF ˆ y t+1 � f (h t+1 ) 

9: end for 

10: Compute penalty P � ‖ ̂ y T − y ‖ 2 2 
11: gradloss � (P − b) · grad ( logp , θ ) − λ · grad ( entr , θ ) 

12: Update baseline b � 0 . 99 b + 0 . 01 P 

13: return ( gradloss , b) 

.3. Policy function 

As mentioned above, we use a parameterized policy function

θ modeled as an artificial neural network. This network takes the

tate s t = (h t , ̂  y t ) as input. The reconstruction 

ˆ y t and the history

f observations h t are processed separately in two independent

treams and subsequently concatenated and processed by two fully
onnected layers. The output of the network is a L -dimensional

ector normalized with a softmax operation to provide a proba-

ility distribution over the VF locations, which in practice models

he policy function πθ ( · | s t ). Table 1 summarizes the architecture

f this network. 

To speed up the learning process, we impose that the same lo-

ations can not be queried twice. To do this, the feature vector w

f the last layer is modified using the mask vector and then trans-

ormed with softmax 

θ (· | s t ) = softmax ( (1 − m t ) · w − m t · E ) , (8) 

here E � 0 is an arbitrarily large scalar and m t = 1 [ h t � = •] is the

ask of queried locations. This truncates the probability of loca-

ion � to zero if (m t ) � = 1 ( i.e. , if it has been already queried). 

.4. Reconstruction function 

From the history of observations h t , the reconstruction function

f : ( R ∪ {•} ) L → R 

L provides a reconstruction 

ˆ y t = f (h t ) of the VF

ith the available information at time step t . In our experiments

e propose and compare two different approaches for this recon-

truction function. The first approach, based on SORS ( Kucur and

znitman, 2017 ), assumes a linear relationship between observa-

ions and the reconstructions. The second approach models f as a

eep neural network. 

.4.1. Least squares ( LSTSQ ) 
In this scheme, we assume that there is a linear mapping from

he observations to the full VF reconstruction. Formally, if we let

 h t 
be the binary t × L matrix that removes the unobserved ele-

ents • from h t , we write the linear VF reconstruction as 

ˆ 
 t = B t M h t h t , (9) 

here B t is a L × t matrix and we assume that 0 · • = 0 . For each

iven history h t we compute a suitable B t for the specific set of

ueried locations of h t by using a reconstruction training dataset

 rec and solving the quadratic problem 

 t = arg min 

B 

‖ Y − BM h t Q ‖ 

2 
F , (10)

here Q and Y are L × N rec matrices containing the N rec measure-

ents { q 

(i ) } N rec 
i =1 

and the real VFs { y (i ) } N rec 
i =1 

from D rec . Eq. (10) has

 closed form solution using least squares. Hence, the linear recon-

truction function f ( h t ) first performs a least squares to find the

atrix B t as the solution to Eq. (10) and then uses B t for recon-

truction as described in Eq. (9) . 

.4.2. Neural network ( RNet ) 
As more powerful alternative to the linear assumption, we

odel the reconstruction function as a neural network f φ( h t )

ith parameters φ, which we will call the reconstruction network .
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Table 2 

Partitioning of the Rotterdam and Bern datasets into training, validation and test sets. Note that the training sets are 

further halved to train the policy network and the reconstruction function. 

# Tr. samples (Location Net. π ) # Tr. samples (Rec. function f ) # Val. samples # Test samples 

Rotterdam 2052 2077 470 509 

Bern 4720 4780 10 0 0 1180 
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Table 1 describes its architecture. We train this network by solving

the optimization problem 

φ∗ = arg min 

φ

E (q , y ) ∼D rec , m 

[‖ y − f φ(h (q , m )) ‖ 

2 
2 

]
. (11)

To compute this loss during training, the elements q and y are uni-

formly sampled from D rec . The masks m are randomly generated

by simulating possible combinations of observed locations. Specif-

ically, we generate each mask m by first sampling the number of

observed locations from a uniform distribution U(1 , T ) and then

sampling that number of elements from �. Sampled elements are

set to 1 in the mask m , and the rest are set to 0. The history h can

be trivially constructed based on the observations q and the mask

m as 

h � (q , m ) = 

{
q � if m � = 1 , 

• if m � = 0 . 
(12)

Note that the reconstruction network and the policy network

are trained independently in two separate phases. In a first phase

we train the reconstruction network alone, which is then frozen

during the subsequent training of the policy network. Also, both

the linear and the neural network reconstruction functions are

trained with a reconstruction training data set D rec that differs

from the data set D used to train the policy function. 

4. Experimental results 

In this section, we validate our approach PASS by evaluating it

on two different datasets and by comparing its performance with

a number of state-of-the-art methods. 

4.1. Experimental set-up 

We evaluated our approach on two separate datasets: 

• Rotterdam dataset acquired at the Rotterdam Eye Institute

(Netherlands) ( Bryan et al., 2013; Erler et al., 2014 ). It includes

5108 visual field samples from 22 healthy and 139 glauco-

matous patients. VFs were acquired using a 24-2 pattern (see

Fig. 1 c) with L = 54 locations by the Humphrey Visual Field An-

alyzer II (Carl Zeiss Meditec AG, Jena, Germany). 
• Bern dataset containing 1108 visual fields from 538 patients

collected at Inselspital Eye Clinic of Bern (Switzerland). VFs

were collected with the G pattern (see Fig. 1 d) with L = 59 lo-

cations using the OCTOPUS 900 Perimeter (Haag-Streit AG, Ko-

eniz, Switzerland). We applied data augmentation to account

for the low number of samples by using the Open Perimetry

Interface (OPI) ( Turpin et al., 2012 ) to simulate patient VFs. Us-

ing OPI, any perimetry strategy can be run on a patient model

given a true VF measurement to generate additional instances

of the same VF with natural variations. In our case, the VFs

were simulated 10 times using the SimHenson model ( Turpin

et al., 2012; Henson et al., 20 0 0 ), leading to 11080 samples in

total. 

Both datasets are partitioned in 80%, 10%, 10% splits corre-

sponding to the training, validation and test sets, respectively. As

previously mentioned, we train the policy function network and

the reconstruction function on separate training sets. To do this,
e split the training set into two halves. All splits are made in a

atient-basis manner, so that VFs from the same patient are never

resent in two different splits. Table 2 summarizes the number of

amples in the training, validation and test sets for both datasets. 

We performed qualitative and quantitative comparison between

ur approach and the state-of-the-art methods DS ( Weber and

limaschka, 1995 ), SORS ( Kucur and Sznitman, 2017 ), and TOP
 Morales et al., 20 0 0 ). We trained our PASS algorithm with both

he LSTSQ and the RNet versions of the reconstruction function,

hich we denote PASS+LSTSQ and PASS+RNet , respectively. For

air comparison, the reconstruction network is pre-trained once for

ach dataset, and all the experiments with PASS+RNet use the

ame reconstruction network. At test time, the starting query stim-

lus at a next location is set to the value given by the previous re-

onstruction value, i.e. q l t+1 
= ( ̂ y t ) l t+1 

. We then use the SimHenson

odel to simulate patient responses. 

The horizon T is a hyperparameter of our policy. However, a

olicy trained for a specific horizon T might perform well when

sed with a different horizon at test time T test . To assess this rela-

ion, we report performances of our method trained with horizons

f T = 8 , T = 16 and T = 36 , and tested with horizons of T test = 8 ,

 test = 16 and T test = 36 . The DS method has a fixed T = T test = L,

s it needs to query all possible locations. Similarly, TOP has a

xed horizon. For DS and TOP , we report results for their respec-

ive fixed horizons at training and testing time. SORS is trained

or T = L, but its greedy nature allows us to stop the testing at any

oint T test . Hence, we also use T test = 8 , T test = 16 and T test = 36

or SORS . 
The experiments were implemented in Python and R. We used

yTorch ( Paszke et al., 2017 ) as our automatic differentiation li-

rary. We perform mini-batch stochastic gradient optimization us-

ng the Adam ( Kingma and Ba, 2014 ) optimizer to train the policy

nd reconstruction networks. The learning rate and batch size for

he policy network were set to 10 −5 and 256, respectively. For the

econstruction network, we used a batch size of 32 and a learning

ate of 10 −4 , which decayed by 0.1 every 300 epochs. The model

hat led to the best performance on the validation set was selected

or evaluation on the test set. 

.2. Evaluation criteria and metrics 

We use two different metrics to quantify the performance of

ifferent methods. The quality of the reconstructions is measured

n terms of the MSE between the reconstruction 

ˆ y and the ground-

ruth y , 

 ̂

 y − y ‖ 

2 
2 , (13)

veraged over the testing dataset. We report the MSE computed

oth over all L locations and only in the L − T test unobserved lo-

ations, to assess the generalization power of our reconstruction

ethods. In particular, reconstruction errors on locations that have

ot been evaluated are of strong interest here as they indicate to

hat extent the clinician can believe the values presented. 

We also provide the averaged number of stimuli presentations

#Pres.) required to acquire the VF by each method. #Pres. is pro-

ortional to the time taken to evaluate a patient. Note that, while

elated, #Pres. is not equal to the number of queries T test , as each
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ndividual location requires a number of stimuli presentations de-

ending on its sensitivity threshold. 

Since our overarching goal is to improve the quality of the re-

onstructions for a reduced amount of queries, we emphasize the

mportance of results obtained with small values of T test , especially

hen T test = 8 . For larger horizons, such as T test = 36 , the quality

f reconstructions is less interesting as the number of unobserved

ocations is smaller and there is a natural convergence in perfor-

ance for all methods. 

.3. Quantitative performance 

Table 3 compares the different methods on both the Rotterdam

nd Bern datasets. We observe that our approach brings improve-

ents in terms of accuracy when compared to its counterparts,

specially for unobserved locations. Moreover, our methods took

imilar or less examination time. For the Rotterdam dataset, PASS
ethods have remarkably lower MSEs than the baselines. When

ompared to TOP , PASS led to a huge increase in terms of accu-

acy and speed. For shorter horizons, PASS methods reached much

etter accuracy than TOP while requiring half the number of stim-

li presentations. DS , having a fix horizon of T test = L, provides

etter reconstructions than PASS for short test horizons, but it re-

uires 125 more stimuli presentations than PASS on average. In-

erestingly, for longer horizons ( T test = 36 ), PASS outperforms DS ,
ielding higher quality reconstructions than DS in 30% less time.

s for standard deviations (SD) of the MSEs, PASS methods, es-

ecially PASS+LSTSQ , had lower or similar SDs than TOP and DS
or T test = 36 . For shorter horizons, they led to larger SD, which is

xpected since PASS leaves some locations untested and leads to

igher variance in the acquisition process. 

As expected, the gain in terms of accuracy decreases when

he testing horizon grows. PASS+RNet could not perform better

han SORS for T test = 36 , even though it had an excellent perfor-

ance for shorter horizons. We attribute this lower performance

or large horizons to limitations in the reconstruction network.

iven that the number of possible combinations of queried lo-

ations increases exponentially with the horizon, the amount of

raining data required to properly train the network grows accord-

ngly. This explains the drop in performance of reconstruction net-

orks for larger testing horizons, and why LSTSQ outperforms RNet
or T = 36 . The fact that PASS+LSTSQ performs better than SORS

hile having the same reconstruction scheme shows how our

atient-specific approach is more effective at selecting locations

o query regardless of the reconstruction procedure. In terms of

SE SDs, PASS generally has lower or similar variance compared

o SORS except at T test = 36 where PASS+RNet led to higher

SE SD. 

For the Bern dataset, PASS methods shows roughly the same

erformance as SORS in terms of mean MSE, even though slightly

etter accuracies are reached for T test = 8 and T test = 36 and the

SE SDs are higher than that of SORS . The Bern dataset includes

elatively healthier patients — more than 70% — that can be easily

stimated by any strategy. Still, our PASS methods reached better

ccuracy than DS and TOP while requiring between 36% and 70%

ewer stimuli. Overall, PASS led to better accuracy on untested lo-

ations with similar or even less number of stimuli than SORS on

oth datasets. 

We also compared our approach to another patient-specific

cheme proposed in the literature, the Spatial Entropy Pursuit ( SEP )
 Wild et al., 2017 ) strategy, which selects VF locations according to

ncertainty of the VF estimation in a greedy way and stops when

he uncertainty is below a pre-defined threshold. For a fair com-

arison, we used the same training and testing datasets as in Wild

t al. (2017) and compare the results with the SEP performance

eported in Wild et al. (2017) . We compare only PASS+RNet
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Table 4 

Performances of PASS and SEP for T test = 20 . 

Method MSE #Pres. 

(Mean, Median) (Mean, Median) 

PASS+RNet ( T = 20 ) 13.81, 5.86 68.34, 69 

SEP 12.85, 10.72 88.87, 73 
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trained for T = 20 . Table 4 shows the MSE means and medians,

as well as the number of presentations achieved by each method.

PASS performs better than SEP in terms of median MSE with

fewer presentations. This implies that our scheme suggests bet-

ter locations to query and estimates VFs more accurately. PASS is
also more flexible than SEP when working with different VF pat-
Fig. 3. Error distributions of PASS and SORS method for the Rotterdam dataset. Mean a
erns: SEP requires an explicit description of the VF layout and

eighborhood, while PASS learns to cope with this information

mplicitly. 

.4. Error distributions 

In this section, we present the error distributions of PASS and

ompare them to that of SORS in order to better analyze the aver-

ge quantitative performance discussed in Section 4.3 . 

Fig. 3 presents the error distributions for the Rotterdam

ataset, as well as their mean and standard deviations (SD). Com-

ared to SORS , both PASS +RNet and PASS +LSTSQ methods for

 = 8 have lower mean and SD. For longer horizons, PASS +RNET

erformed the worst potentially due to the confined training of
nd standard deviations (SD) are given for each plot, and T = T test for each model. 
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Fig. 4. Error distributions of PASS and SORS method for the Bern dataset. Mean and standard deviations (SD) are given for each plot, and T = T test for each model. 
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2 MD is the mean of the deviations of the sensitivity thresholds from the age- 

matched healthy normal values, and is a clinically well-accepted indicator of the 

severity of VF defects. A lower MD implies more severe VF defects. 
he reconstruction network for long horizons. This is supported

y the fact that PASS +LSTSQ almost performed the best for ev-

ry horizon whereby better performance could be achieved with

ASS +LSTSQ compared to SORS even though they share the same

econstruction scheme. Similar observations can be made for the

rror distributions of the Bern dataset in Fig. 4 , where the er-

or variances for PASS are similar or slightly higher to those

f SORS . 

.5. Performance on sub-populations 

To better understand how PASS performs on VFs as a function

F health level, we disantagle the overall performance given in

able 3 and show the performances on sub-populations grouped
y VF mean defect (MD) 2 We use Hodapp classification scheme

odapp et al. (1993) to group VFs into three classes: VFs with

D ≥ −6 belong to the early defect group (EG); VFs with −12 ≤
D < −6 belong to the moderate defect group (MG); and VFs with

D < −12 belong to advanced defect group (AG). Table 5 presents

xperimental results on thsse three groups for the Rotterdam

nd Bern datasets and compares the performance of PASS and

ORS . 
In most cases of the Rotterdam dataset, PASS methods outper-

ormed SORS in terms of accuracy and number of presentations



188 Ş .S. Kucur, P. Márquez-Neila and M. Abegg et al. / Medical Image Analysis 54 (2019) 179–192 

Table 5 

Performances on early defect group (EG), moderate defect group (MG) and advanced defect group (AG) sub-populations for both the 

Rotterdam and Bern dataset. Mean MSEs for each method and sub-population are given, with mean number of presentations in 

parenthesis. Percentages of each group in the training set is also shown. Bold font is used whenever any PASS method performance 

(in terms of error or number of presentations) is higher than SORS for the corresponding T . T test = T in all cases. 

Method Roterdam: Sub-populations Bern: Sub-populations 

EG (57.4%) MG (19.4%) AG (23.2%) EG (70.6%) MG (17.0%) AG (12.5%) 

PASS+RNet ( T = 8 ) 15.58 ( 27.87 ) 45.57 (27.56) 47.66 (24.88) 9.14 ( 24.25 ) 30.31 ( 21.62 ) 41.63 (22.47) 

PASS+LSTSQ ( T = 8 ) 16.29 ( 26.44 ) 46.28 (28.56) 51.97 (23.45) 10.28 ( 23.85 ) 26.82 (22.73) 45.62 (21.71) 

SORS ( T = 8 ) 16.66 (27.96) 48.37 (26.27) 53.20 (22.74) 10.54 (24.34) 24.50 (22.01) 43.86 (20.17) 

PASS+RNet ( T = 16 ) 11.51 (55.45) 38.71 (54.71) 34.88 ( 43.43 ) 7.85 ( 47.53 ) 23.10 ( 43.35 ) 34.22 (40.80) 

PASS+LSTSQ ( T = 16 ) 12.99 ( 52.83 ) 32.18 (58.15) 36.41 (46.94) 8.40 ( 47.41 ) 20.33 (43.95) 32.46 (42.62) 

SORS ( T = 16 ) 12.78 (53.74) 32.60 (53.27) 39.21 (43.44) 8.46 (49.42) 19.10 (43.91) 32.68 (40.02) 

PASS+RNet ( T = 36 ) 8.82 (119.61) 27.32 ( 115.81 ) 26.77 (92.73) 6.30 ( 108.74 ) 18.23 (98.78) 29.58 (90.97) 

PASS+LSTSQ ( T = 36 ) 8.56 ( 115.42 ) 19.57 ( 110.79 ) 22.95 ( 91.43 ) 6.56 ( 107.21 ) 14.92 (98.22) 22.12 (89.78) 

SORS ( T = 36 ) 9.44 (117.21) 21.467 (117.37) 24.43 (91.53) 6.78 (109.41) 15.17 (96.95) 21.73 (87.14) 

Table 6 

Performance of methods on healhty and glaucomatous patients in the Rotterdam dataset. Mean MSEs are given, with 

mean nuumber of presentations in paranthesis. T = T test for all methods. 

Method T test = 8 T test = 16 T test = 36 

Healthy Glaucoma Healthy Glaucoma Healthy Glaucoma 

PASS+RNet 5.24 (29.55) 29.41 (26.80) 5.19 (59.09) 22.09 (51.43) 4.41 (124.61) 16.65 (110.61) 

PASS+LSTSQ 8.61 (28.15) 31.04 (25.64) 5.06 (52.12) 22.82 (51.66) 3.98 (117.18) 14.49 (107.43) 

SORS 9.12 (28.85) 31.85 (26.11) 6.88 (54.48) 23.46 (50.48) 4.60 (120.85) 15.69 (109.09) 
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on the three defect groups. Especially, for shorther horizon such as

T = 8 , the gap between PASS and SORS error performance is sig-

nificant for almost the same number of presentations. For longer

horizons such as T = 36 , PASS +LSTSQ is consistently better than

SORS as was observed in Table 3 . Overall, PASS methods per-

formed better than SORS for EG and AG in most cases (except

PASS +LSTSQ ( T = 16 ) and PASS +RNnet ( T + 36 ). For MG, PASS
has less evident superiority most likely due to insufficient training

samples for that group. 

For the Bern dataset, similarly to the overall performance in

Table 3 , the advantage of PASS over SORS can be seen for EG for

all horizons, whereas it is less apparent for MG and AG as was

the case in Table 3 . Since Bern dataset consists of mainly relatively

healthy population, better performance, even though slight, can

be expected from PASS as it had more examples to train within
(a) Healthy patient

Fig. 5. (a) Comparison of VFs reconstructed with PASS (first and second columns) and w

both from the Rotterdam dataset. The last column shows the ground-truth. Results are s

T test = T in all cases. Black dots indicate the queried locations for each method. PASS ad
hat population. The subtle difference between PASS and SORS is
ue to the fact that improvements on the EG group is marginal

s VFs in that group are largely homogenous and easy to recover

orrectly by most strategies. This is also seen in the Rotterdam

ataset where the smallest improvements were obtained on the

G group. 

In addition to the performance comparison for different defect

roups, we also present in Table 6 mean MSE and number of pre-

entations results separately for healthy and glaucoma subjects in

he Rotterdam dataset. For both healthy and glaucomatous sub-

ects, PASS generally outperform SORS in terms of accuracy with

ore or less similar number of presentations. Exceptions to that

act are the cases of PASS+RNet for T test = 16 and T test = 36

here either only the number of presentations or both the MSE

nd the number of presentations are higher. 
(b) Glaucomatous patient

ith SORS (third column) for (a) a healthy patient and (b) a glaucomatous patient, 

hown for horizons T = 8 (top row), T = 16 (middle row), and T = 36 (bottom row). 

apts queries to the underlying VF, while SORS uses a fix set of locations. 
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(a) Healthy patient (b) Glaucomatous patient

Fig. 6. Failure cases of PASS on a (a) healthy VF and (b) a glaumatous VF. 
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.6. Qualitative evaluation 

We now provide qualitative results of our approach, visualizing

he selected locations and the estimated VF. Fig. 5 a and b show

epresentative results of our methods on healthy and glaucomatous

ases, respectively. 

In Fig. 5 a, we present the results for a healthy VF where the

verall sensitivity thresholds are high ( > 20, except for the blind

pot region), whereas in Fig. 5 b illustrates results for a glauco-

atous case where the sensitivity thresholds are lower. We ob-

erve that the distribution of locations queried by our approach

 PASS+RNet , PASS+LSTSQ ) depends on the VF itself, whereas

ORS selects the same locations for all VFs. Our approach tends

o query locations within regions where the gradient of sensi-

ivity thresholds is large. SORS locations are spread throughout

he entire VF plane, as it has been trained to average over all

inds of VFs, overlooking patient-specific defects at test time.
ig. 7. Normalized bar plots of the first 8 locations selected by PASS and SORS (i.e. T test =
ach model. Both plots show that PASS -selected locations are concentrated in higher gra
he fact that PASS reaches lower MSE than SORS quantitatively

emonstrates the superiority of our strategy. Specifically, given that

ASS+LSTSQ and SORS share the same reconstruction strategy,

he improved performance of PASS+LSTSQ shows that the loca-

ions selected by PASS are more informative. 

Fig. 6 shows two cases where PASS fail to outperform SORS . In
ig. 6 a, which corresponds to a healthy VF, we see SORS perform-

ng very well for each test horizon. SORS locations are well spread

hroughout the VF and oriented at locations of both low and

igh threshold sensitivities which helps the final VF reconstruc-

ion. For this case, PASS+RNet has difficulty with longer hori-

ons, especially when T test = 36 whereby the MSE increases and

ecomes worse than cases with fewer locations tested. Conversely,

ASS+LSTSQ has poor estimation for T test = 8 due to the selected

ocations and overall underestimating the healthy region (i.e. re-

ion with high sensitivity threshold) within the VF. The VF esti-

ation improves for longer horizons while still not outperforming
 8 ) with respect to their gradient measure 
l on the Rotterdam dataset. T = 8 for 

dient regions than those selected by SORS . 
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Fig. 8. Average tested locations on the Rotterdam test set. The proportion of times a location was selected is shown for PASS+RNet (top row), PASS+LSTSQ (middle row) 

and SORS (bottom row) for horizons T = 8 , 16 , 36 . 
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SORS . In Fig. 6 b, we illustrate a glaucomatous VF acqusition where

there are a number of isolated defect regions. In this acquisition,

we see that for T test = 8 , PASS methods underestimated the VF on

the upper hemi-sphere. For T test = 16 , while PASS+RNet almost

performed as well as SORS , PASS+LSTSQ concentrated its selec-

tion of locations to the upper-middle hemi-sphere making the es-

timation of other regions more difficult and resulting in a poor VF

estimation. For T test = 36 , both PASS techniques reached similar

MSEs but were still outperformed by SORS . 
To support our claim that PASS methods generally attend re-

gions that have high gradient, we present in Fig. 7 the normalized

bar plots of the first T test = 8 locations selected by PASS methods

( T = 8 ) and SORS with respect to gradient in VFs. We quantify the

gradient using 
l = max l n ∈N l | y l − y l n | ( Chong et al., 2014; Kucur

and Sznitman, 2017 ) for the location l , where N l is the set of (at

most 8) neighboring locations. 
l is the highest difference between

the sensitivity thresholds of a location and of its neighbors which

quantifies the high gradient regions within a VF. Fig. 7 shows the

probability of attending a location (in the first 8 time steps) within
(a) Rotterdam

Fig. 9. Co-occurrence of selected locations using PASS+RNet on the (a) Rotterdam and 

all cases. Patients are sorted according to their mean defect (MD) values. Similar results a
 given range of gradient measures. Accordingly, we observe that

oth PASS +RNet and PASS +LSTSQ first attended the locations hav-

ng higher gradient measures than SORS . 
To gain a broader view of what locations are selected by PASS ,

ig. 8 illustrates how often a location is evaluated on the Rotter-

am test set. Values of 1 indicate locations tested in each VF, while

 occurs when a location is never tested. For this reason, SORS lo-

ations are the same regardless of the tested VF. In contrast, PASS
daptively selects location which is depicted by smoother averaged

ocations. Beyond this, Fig. 8 shows that PASS locations depend

n the horizon T . This is visible as some locations at T = 8 hav-

ng more importance than at T = 16 or T = 32 . This indicates that

ASS is not performing a greedy selection but adjusts based on its

redefined horizon. 

We also use the co-occurrence matrices of Figs. 9 a and b to as-

ess how our method adapts selected locations according to the

everity of the VF defects. Each element ( i, j ) of a co-occurrence

atrix shows the number of shared locations among those that

ur method selected for the i -th and the j -th VFs of the test set.
(b) Bern

(b) Bern test sets, with T = 8 (left), T = 16 (middle) and T = 36 (right). T test = T in 

re obtained for PASS+LSTSQ . 
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Fs are sorted according to their MDs. Elements to the left and

ottom parts of the matrices correspond to healthier VFs. Higher

alues in the co-occurrence matrices indicate that the correspond-

ng sets of queried locations are more similar. 

Co-occurrence matrices show that the co-occurrence of queried

ocations are strongly related to the MDs. PASS queries similar lo-

ations for patients with similar VFs but adjust the selected loca-

ions in abnormal VFs, as can be deduced from the square blocks

f high values that appear along the diagonals of the matrices. For

xample, in Fig. 9 a the sets of selected locations are very similar

or all VFs with MD > −5 , which corresponds to relatively healthy

ases and early glaucoma. This is due to the fact that healthy VFs

re smooth and similar to each other. When MD ≤ −5 , our ap-

roach selects sets of locations with fewer shared elements and

ends to be more patient-specific, since abnormal VFs are different

n each case. There are two small squared blocks of relatively high

alues, corresponding to the mild ( −12 < MD < −6 ) and advanced

laucoma patients (MD < −12 ) ( Heijl et al., 2012 ), where VFs are

ostly uniform with low ST values. A similar trend can be also

bserved in Fig. 9 b concerning the Bern dataset. 

. Conclusion 

In this work, we have presented a patient-specific perimetry

trategy that leads to a better accuracy-speed trade-off in its abil-

ty to acquire visual fields. Our approach relies on reinforcement

earning, visual attention and sparse approximation to provide a

omprehensive framework for fast visual field acquisition. In prac-

ice, we decompose the problem in two by focusing on (1) a flex-

ble model for VF reconstructions and (2) a novel method to se-

ect appropriate VF locations. By treating the selection of VF loca-

ions within a reinforcement learning context, we are able to learn

 policy function that is optimized to iteratively select locations

hat reconstruct VF’s effectively at the end of a fixed horizon. This

eparts from traditional greedy strategies that typically select loca-

ions based on the next best possible choice. We showed in our ex-

eriments, that even when using equivalent reconstructions meth-

ds, the locations selected with our approach outperform state-of-

he-art methods. In addition, our method is patient-specific and

dapts what locations are selected based on the VF itself, lead-

ng to improved accuracies at untested VF locations. In the future,

e plan to determine strategies that select which of the proposed

odels is optimal to use depending on the patient and then extend

ur framework to other traditional imaging devices in medicine. 
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