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Abstract

Perimetry testing is an automated method to measure visual function and is heavily used for

diagnosing ophthalmic and neurological conditions. Its working principle is to sequentially

query a subject about perceived light using different brightness levels at different visual field

locations. At a given location, this query-patient-feedback process is expected to converge

at a perceived sensitivity, such that a shown stimulus intensity is observed and reported

50% of the time. Given this inherently time-intensive and noisy process, fast testing strate-

gies are necessary in order to measure existing regions more effectively and reliably. In this

work, we present a novel meta-strategy which relies on the correlative nature of visual field

locations in order to strongly reduce the necessary number of locations that need to be

examined. To do this, we sequentially determine locations that most effectively reduce

visual field estimation errors in an initial training phase. We then exploit these locations at

examination time and show that our approach can easily be combined with existing per-

ceived sensitivity estimation schemes to speed up the examinations. Compared to state-of-

the-art strategies, our approach shows marked performance gains with a better accuracy-

speed trade-off regime for both mixed and sub-populations.

1 Introduction

Standard Automated Perimetry (SAP) is one of the most commonly used techniques for mea-

suring a subject’s perceived visual ability. For a given eye, it provides quantitative measure-

ments of visual function represented as a two-dimensional spatial visual field map (see Fig 1).

As a medical imaging system, it is of great clinical importance for diagnosing and monitoring

numerous ophthalmic diseases (e.g., glaucoma) and for detecting neurological conditions

[1, 2].

At its core, the goal of SAP is to determine at each location of the visual field the perceived

sensitivity (PS), i.e., the brightness level with which a subject sees a stimulus 50% of the time.

Using a perimeter as the one shown in Fig 1 (left), this is achieved using a semi-automated

query-response procedure: while fixating their gaze at a central point on a screen, a subject is

presented with light stimuli of adaptively selected brightness at different locations of the visual

field and is asked to press a button whenever the stimulus is perceived. As such, the responses

of subjects are inherently noisy and response reliability reduces over time due to fatigue effect
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[3, 4]. While presenting all brightness levels at all locations multiple times would provide

many responses and allow one to average out response noise, doing so would be extremely

time consuming (i.e., more than 15 minutes per eye [3]), further worsening the induced

fatigue-bias. Conversely, testing one stimulus at a handful of locations would produce highly

inaccurate visual fields and be ill-suited for clinical use. As such, a central goal of SAP testing

strategies is to optimize in which order and how often the locations should be tested in order

to be both fast and accurate [5].

A number of SAP strategies have been introduced in the literature and are now common in

manufactured devices. They commonly rely on staircasing schemes [6] as in the Dynamic Test

Strategy (DTS) [7] and in Tendency Oriented Perimetry (TOP) [8] where the intensity of pre-

sented stimuli changes by fixed or adaptive step sizes according to the patient responses. Alter-

native methods have also been introduced such as the Zippy Estimation by Sequential Testing

(ZEST) [6, 9], where the next stimulus is determined by leveraging patient responses within a

Fig 1. Perimetry testing and visual field. (left) A perimetry device, (center) a visual field with perceived sensitivities (PS) at locations in the central 30˚

field and (right) the associated image representation. Dark regions correspond to visual defects. (bottom) Probability-of-seeing-curve. The probability of

seeing a stimulus increases with increasing stimulus luminance. Note the inverse relationship between sensitivity and stimulus luminance.

https://doi.org/10.1371/journal.pone.0185049.g001
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Bayesian model. Simiarly, the widely popular SITA algorithm [5, 10] and its faster counterpart

SITA FAST [11], also follow Bayesian schemes that periodically update probability distribu-

tions as new locations are tested. While the above methods are commonly used in clinics, their

performance could be improved.

More recently, [12, 13] focused on spatial models where neighboring information is

exploited in a customized or data-driven manner. These approaches have been shown to lead

to similar or better accuracy than ZEST. However, they typically keep the test time either the

same [13] or only bring speed improvement in healthy subjects [12]. A more recent attempt to

improve speed-accuracy trade-off has been presented in [14] where a graphical model of the

visual field was presented and allows response information to propagate during an examina-

tion leading to shorter test time. This strategy however is sensitive to the selection of model

parameters and therefore relies on a meticulous optimization procedure, making it ill-suited

for clinical use. A parameter-free, easy-to-implement, fast and accurate strategy is preferable

from both a clinical and manufacturer point of view.

Towards this end, we introduce a novel meta-strategy that leads to important reductions in

examination time, by speeding up existing perimetry strategies. Our new meta-strategy,

namely Sequentially Optimized Reconstruction Strategy (SORS), is inspired by compressed

sensing [15] and sparse approximation [16] methods for signal and image reconstruction.

Since previous studies have shown that testing optimal subsets of locations can lead to accurate

assessment of glaucomatous defects [17, 18], we propose to reconstruct visual fields from a lim-

ited number of measurements i.e., testing a sparser grid of test locations, by assuming the exis-

tence of correlations between visual field locations. During an initial training phase, our

method sequentially estimates the order in which different locations should be tested to recon-

struct visual fields most accurately. At examination time, locations are sequentially tested in

the found order using a standard strategy, from which the visual field is reconstructed after

each tested location. Reconstructed locations are then used as starting estimates when query-

ing following test locations. In particular, we claim that our meta-strategy can be used and be

beneficial using a ZEST Bayesian scheme or DTS staircasing. We show experimentally on a

visual field data set of both healthy and glaucomatous subjects, that our strategy provides large

speed gains compared to existing methods without compromising the accuracy of estimated

visual fields. In addition, we show that although our strategy does not require all locations to

be tested, it allows for good accuracy even in cases of local visual impairment.

The remainder of this article is organized as follows: In Sec. 1, we summarize existing peri-

metry testing strategies. We then outline the training and testing phases of the SORS method

in Sec. 3. Experimental validation of our method is then outlined in Sec. 4 and concluding

remarks are given in Sec. 5.

2 Related work

In this section, we first summarize fundamentals in perimetry and describe a number of

related perimetry testing strategies.

The goal of perimetry is to estimate the PS at M locations (e.g., M = 54 as in Fig 1 (middle))

describing the visual field. The PS at an individual location corresponds to the sensitivity, in

dB, for which there is a 50% probability chance of being observed. Traditionally, this has been

modeled using a probability-of-seeing-curve (POSC) [3, 19] such as the one illustrated in Fig 1

(bottom). As such, the distribution of responses is of maximum entropy, as the likelihood of

observing an incorrect response (i.e., a false positive or false negative) is maximal at the PS

value. In addition, at unhealthy locations with lower PS, the number of incorrect answers is

expected to increase as the POSC becomes more gradual (e.g., red curve in Fig 1 (bottom)).

Sequentially optimized reconstruction strategy
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To estimate visual fields using SAP, different automated methods have been proposed in

the past. Each of them include the following: (1) a method to determine what initial intensity

should be shown when testing a given location, (2) a local PS testing strategy that determines

what intensities should be presented over time at a given location and (3) a strategy for select-

ing the order in which different locations are evaluated.

From this, a number of methods have been proposed in order to produce accurate or

approximate visual fields. The simplest method is the Full Threshold (FT) strategy [5]. It evalu-

ates each location using a predefined staircase intensity sequence (e.g., increase or decrease the

intensity based on the previous response). After initially testing four anchor points starting

from population normal values, it tests subsequent locations by updating the initial stimulus

based on previously tested neighbors [3]. FT leads to accurate visual field estimates for normal

subjects as it presents many stimuli but inevitably leads to higher examination times, ranging

from 12 to 18 minutes per eye [3]. A variation of FT is DTS which uses staircasing with adap-

tive step sizes that are determined by the slope of the POSC. Accordingly, larger step sizes are

used for depressed PS values where the POSC is shallower. All locations are tested but each

starting intensity is based on a local average of found PS values. In general, DTS reduces testing

time on average by 40% compared to FT with a reasonable visual field approximation [3] and

is a standard of care in many eye clinics and hospitals. TOP [3] on the other hand uses an asyn-

chronious staircasing approach with deterministic steps at individual locations such that each

location is only tested once. Locations in groups of four are tested group by group; once one

group of test locations is evaluated, the estimates of the locations in the other groups are

updated by averaging the estimates at their already-tested-neighboring locations. The updated

estimates are then used as the starting points for querying the next group of locations. As TOP

only presents one stimulus per location, it results in a very fast but error-prone estimation

procedure.

An alternative is ZEST [9], which unlike FT, avoids a predefined staircase and opts for a

sequential Bayesian model to select likely PS values. As such, it highly depends on a probability

mass function (PMF) over the PS values for a given location in order to compute posterior dis-

tributions of PS. ZEST evaluates all visual field locations in a random order, yet has been

found to effectively reduce the number of presentations thanks to the Bayesian principle [20].

Also using this Bayesian principle, SITA [5, 10] and SITA FAST [11] are broadly used methods

and have been reported to perform comparably with DTS and TOP, respectively. While tech-

nical details concerning either SITA and SITA FAST remain unavailable, both methods display

advantages and drawbacks over TOP and DTS [21–24].

One common aspect of the presented approaches so far is that they test every location at

least once. In contrast, Spatial Entropy Pursuit (SEP) [14] combines the ZEST method and a

graphical model to reduce the examination time. It uses a combined entropy and gradient heu-

ristic to adaptively select which locations should be tested within a probabilistic model. In

addition, unlike previously mentioned strategies, it is able to ignore some locations that are

deemed certain even though they have not been explicitly tested. SEP is reported to reduce the

number of stimuli by 55% for healthy subjects and by 23% for glaucomatous subjects when

compared to DTS. A limitation of SEP however is its sensitivity to the selected graphical model

and ZEST parameters. It therefore requires a rigorous parameter optimization to perform at

an effective level.

Overall, while some of the aforementioned methods are used in clinical care (i.e., SITA,

DTS, FT and TOP), they could be improved in terms of speed and accuracy. To overcome this,

we propose a meta-strategy, capable of using traditional staircase methods or ZEST-like Bayes-

ian strategies at individual locations but in a more efficient and faster manner. Our approach,

in essence, determines which locations should be chosen and in what order they should be
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evaluated in order to maximally improve the visual field estimate in the least amount of time.

As we show in our experiments, SORS brings a large improvement when compared to existing

methods in terms of speed, while suffering less from estimate errors.

3 Sequentially optimized reconstruction strategy

We now describe our method, SORS, which treats the problem of visual field estimation as a

reconstruction problem from sparse observations. In this setting, the observations will be a

small or limited number of visual field locations that have been viewed to a satisfactory accu-

racy using either a traditional staircasing or a Bayesian method. Using these locations and

their values, we will leverage the correlative nature of the locations within a training data set to

estimate the PS at unobserved locations of the visual field. As such, SORS can be split into two

sections:

1. Training phase: From a data set of fully observed visual fields, we will determine which loca-

tions are most effective to reconstruct the entire visual field from partial observations and

simultaneously compute optimal reconstruction coefficients. This will be performed for an

increasing number of observed locations in a greedy manner.

2. Examination phase: For a new examination, found locations and reconstruction coefficients

will be used to infer unobserved locations. If the user prefers a more accurate estimate, fur-

ther locations can be observed using previously estimated PSs as starting points and the

reconstruction can be recomputed.

We now specify some notation that will be necessary throughout the remainder of the

paper.

3.1 Notation

Let X 2 RM�N be a matrix of N visual fields where the nth column vector,

xn 2 R
M; n ¼ 1; ::;N, corresponds to a visual field with M PS values. The ordering of visual

field locations is kept constant for all N samples and is denoted by the sequence O = [1, . . .,

M]. While O is a sequence, we will slightly abuse this notation and use set operators on O as

well. We define S�M to be the number of observed visual field locations tolerated during an

examination and let OS 2 O be the sequence of such observed location indices. Our assump-

tion is that 8n, xn can be estimated by a linear combination of its observed entries using a basis

matrix D 2 RM�S that defines the linear relationship between test locations.

3.2 Training phase

Assuming that PS values at different locations are linearly-dependent to each other and that an

examination allows for up to S observations to be made, we can approximate the training set X
by computing

X̂ ¼ DYOS
; ð1Þ

where X̂ is an approximate reconstruction of the visual fields X and YOS
= IOS

X such that

ðIOS
Þi;j ¼

(
1 ifðOSÞi ¼ ðOÞj;

0 otherwise;
ð2Þ

where IOS
2 IRS�M and (OS)i = (O)j indicates that the ith measurement corresponds to the

Sequentially optimized reconstruction strategy
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location j. By this, the measurement matrix YOs
is a sub-matrix of X consisting of rows indexed

by OS.

Recall that we are interested in finding an optimal sequence of S locations to evaluate and a

corresponding basis that would lead to a good estimate X̂ . We thus cast this as an optimization

problem of the following form,

fD�;O�Sg ¼ arg min
D2IRM�S;

OS2O

jjX � DYOS
jj

2

2
:

ð3Þ

Note that solving Eq (3) by brute-force suggests optimizing iteratively over D for every possible

sequence OS, which is not feasible as the number of available sequences could be very large

depending on S.

Alternatively, we propose a greedy approach which searches for a good subset OS by

sequentially selecting locations rather than trying to find them in one step. Formally, the kth

element in OS ¼ fl�1; l
�
2
; :::; l�Sg is found by

l�k ¼ arg min
l2OnOk� 1

jjX � Dl
kYOk� 1;l

jj
2

2
; k ¼ 1; . . . ; S; ð4Þ

where

Dl
k ¼ XYT

Ok� 1;l
ðYOk� 1;l

YT
Ok� 1;l
Þ
� 1
; ð5Þ

is a basis matrix associated with the measurement matrix YOk−1,l
, Ok−1,l is the sequence Ok−1 to

which location l is appended at the end and O0 = ;. As the intermediate basis matrices will be

also used at examination time, the procedure results in both the sequence O
�

S ¼ fl
�
1
; l�

2
; :::; l�Sg

and the corresponding basis set D� ¼ fD
l�k
k jk ¼ 1; 2; :::; Sg. We summarize the training phase

algorithm of SORS in Alg. 1. While the presented greedy approach presumably leads to sub-

optimal solution, we show in Appendix A that it provides superior performances over poten-

tial alternative schemes (see Fig 2).

Algorithm 1: SORS Training algorithm

Input:Trainingdata X, locationset Ω, S
1 InitializeO

�

S ¼ ;;D
� ¼ ;;O0 ¼ ;; IO0

¼ 0;
2 for k = 1, 2, . . ., S do
3 errorl 0, 8l 2 (Ω\ΩS)
4 for l 2 (Ω\ΩS) do
5 Ωk−1,l Ωk−1[{l}
6 YΩk−1,l IΩk−1,l X
7 Dl

k  XYT
Ok� 1;l
ðYOk� 1;l

YT
Ok� 1;l
Þ
� 1

8 X̂  Dl
kYOk� 1;l

9 errorl  jjX � X̂ jj2
2

10 end
11 l�k  argminlerrorl
12 O

�

S  O
�

S [ l�k
13 D�  D� [ D

l�k
k with D

l�k
k ¼ XYT

O�S
ðYO�S

YT
O�S
Þ
� 1

14 end
Result:SequenceO

�

S, BasissetD�
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3.3 Examination phase

During an examination, the location ordering O
�

S is sequentially evaluated using either the

staircasing or Bayesian approach for PS estimation. In the following, we detail this process and

state how either location testing strategy can be used.

In general, we perform the following two steps iteratively for S locations using either PS

estimation method, which we denote here as P:

1. Location k 2 [1, S], l�k of an unknown visual field e is tested with P and the entire visual

field is reconstructed using the corresponding basis, Dl
�
k
k as given by

êk ¼ D
l�k
k yO�k

; ð6Þ

where yO�k
is the observed measurement vector including all previous measurements at the

locations l�
1
; l�

2
; :::; l�k� 1

as well as at the last one, i.e., l�k and êk is the estimated visual field at

the kth step. Note that all the previously tested k PS values are used for this reconstruction

step.

2. The starting intensity level for method P is updated at the unobserved location l�kþ1 that is

to be tested next using êk . As this process depends explicitly on P, we outline this more

clearly for both staircasing and Bayesian methods below.

This two-step iterative process is stopped when all locations in O
�

S have been tested using P.

Note that by updating the starting points for the next locations to query, we are able to further

reduce the number of stimuli presentations at a given location, as the presented stimulus is on

Fig 2. Performance comparison between SORS and alternative optimization schemes, namely Reconstruction Strategy (RS) and Optimized

Reconstruction Strategy (ORS). We present one version of RS and ORS where there is no intermediate reconstruction step in test time (left) and on the a

second version where intermediate reconstruction steps were incorporated, called RSv2 and ORSv2 (right). Figures show the median Root Mean Square

Error (RMSE) performances of each method with respect to the median number of stimuli presentations. See Appendix A for details.

https://doi.org/10.1371/journal.pone.0185049.g002
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average closer to the true PS value. We now detail two versions of our method that use differ-

ent PS estimation strategies.

3.3.1 SORS-ZEST. This version of SORS uses the ZEST Bayesian procedure when testing

a single test location. As previously mentioned, ZEST starts testing a location according to a

prior PMF which is a weighted combination of normal and abnormal PS as described in [20].

In practice, this corresponds to a mixture of two Gaussian distributions centered on an age-

matched normal value and on an abnormal value (0 in practice), representing healthy and

glaucomatous population, respectively. This can be formulated as

PMFl � Gðnvl; slÞ þ aGð0; 1Þ þ �l; ð7Þ

where PMFl is the PMF at location l, G(μ, σ) is a Gaussian function with mean μ and standard

deviation deviation σ, nvl is the age-matched normative value associated with location l, α is

the weight of the Gaussian function corresponding to sick population, and �l is a bias term to

guarantee that no value is assigned zero probability.

Given that in step 2 of the examination method, we can reconstruct visual fields from few

observations using D
l�k
k , we propose an alternative prior distribution for the next location to be

tested, created by shifting G(nvl, σl) such that its mode is given by the estimated value at the

location l�kþ1
. That is, we let

PMFl�kþ1 � Gðê
l�kþ1

k ; s2
l Þ þ aGð0; 1Þ þ �l; ð8Þ

where PMFl�kþ1 is the prior PMF associated with location l�kþ1
and ê

l�kþ1

k is the estimated value at

the l�kþ1
location of the last reconstructed visual field êk. Note that the first test location has a

standard prior PMF as given in Eq (7) but that the following locations have adjusted PMFs

according to the reconstructed visual field.

3.3.2 SORS-Dynamic. In this version of SORS, we use a staircasing approach with step

sizes that adapt to the slope of POSC as in DTS. As we locally use the same procedure as DTS,

we denote this version SORS-Dynamic where SORS mainly differs from DTS in the selection

of locations to test, in the determination of the starting stimulus luminance and most impor-

tantly, in the number of test locations queried. In this method, the starting stimulus presented

at the next location l�kþ1
is given by ê

l�kþ1

k � t estimated during the kth reconstruction step. Note

that we set τ = 4Â dB for all experiments performed, as including this small offset provides

superior performances in practice.

4 Results

4.1 Experimental set-up

We validated our approach using a publicly available visual field data set [25, 26] containing

5108 visual fields from both eyes of 22 healthy and 139 glaucomatous patients. The data was

collected using a Humphrey Visual Field Analyzer II (Carl Zeiss Meditec AG, Germany). Each

visual field contains M = 54 test locations.

To evaluate the performance of SORS in comparison to established methods, we compare

our method with ZEST [9], TOP [8], DTS [7] and SEP [14]. All experiments were imple-

mented using R and the Open Perimetry Interface (OPI) [27, 28], which allows us to simulate

the response of individuals according to their true visual field [12, 13, 29].

We performed a 10-fold cross-validation; training and test visual fields in each fold were

selected such that they do not include visual fields from the same patient. That led to folds with

roughly 4597 training and 511 test samples. For each fold, the optimal sequence of test

Sequentially optimized reconstruction strategy
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locations O
�

S , as well as the corresponding basis set D� were found for S = 1, 2, . . ., 40 and eval-

uated on the test data. In addition, for each fold, we optimized the ZEST parameters related to

the prior probability of each location, specifically σl and �l, while setting α to 0.1 in Eq (7). We

set the ZEST stopping criterion as the standard deviation of the posterior PMF being less than

2 and the maximum number of stimuli per location being 4. False positive and false negative

response rates of the simulated subjects were set to 0.03 and 0.01, respectively. Below, we pres-

ent the results for one fold selected at random, as similar trends were observed in other folds.

4.2 Qualitative evaluation

We first show in Fig 3 an example of an examination and how SORS sequentially evaluates dif-

ferent locations. In each field, PS values are estimated (dark regions indicating defects) and red

dots show tested locations. As more test locations are used, differences between the true and

estimated PS values decrease and a reasonable estimation is achieved with only 15-20 locations

tested. Note that even if not all locations are evaluated, the visual field estimate is close to the

true visual field (see S = 25).

Similarly, Fig 4 depicts the order of the 20 first locations selected as a function of the train-

ing set used. In particular, we show different orderings found when training using only healthy

subjects (left), glaucoma patients (middle) and a mixed population of both subjects (right).

Note that the mixed population ordering is similar to that of the glaucoma patient ordering,

because the number of healthy subjects is an order of magnitude smaller than that of glaucoma

patients in the mixed population. Importantly, there is a significant differences in selected

Fig 3. Qualitative evaluation of SORS. Top left shows the starting visual field with age-normalized values. Bottom right shows the

true visual field to be estimated. In between, the sequentially estimated visual fields using S 2 {5, 10, 15, 20, 25, 30} location

measurements. Red points show the corresponding S tested locations.

https://doi.org/10.1371/journal.pone.0185049.g003
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locations between healthy and glaucomatous individuals. It can be seen that training on

healthy subjects leads to more locations selected at the periphery of the visual field. This is in

strong contrast to a concentrated set of central locations when training with glaucomatous

subjects.

4.3 Accuracy and speed performance comparison

Fig 5 presents quantitative performances of the evaluated methods in terms of Root Mean

Square Error (RMSE) and the number of stimuli presentations used (i.e., examination time).

Throughout the rest of the paper, we will use abbreviations SORS-D and SORS-Z which stand

for SORS-Dynamic and SORS-ZEST, respectively.

Fig 5 (left) compares the performance of SORS with S = 16 and S = 36 with that of state-of-

the-art strategies. With 54 stimuli presentations, TOP achieves relatively low accuracy (median

RMSE of 5.47). Testing only 16 locations, SORS-D (median RMSE of 4.47, median number of

presentations of 50) performs significantly better than TOP in both accuracy and speed

(Mann-Whitney U test, p< 0.0001). Similarly, SORS-Z testing only 16 locations (median

RMSE of 4.52, median number of presentations of 62) has a reduced RMSE compared to TOP

(significant difference, Mann-Whitney U test, p< 0.0001), with a slightly higher number of

presentations.

Testing 36 locations, SORS-D (median RMSE of 3.54) and SORS-Z (median RMSE of 3.63)

achieve similar performance to DTS (median RMSE of 3.51, non-significant difference with

SORS-D, Mann-Whitney U test, p> 0.05, significant difference with SORS-Z, Mann-Whitney

U test, p< 0.001) and ZEST (median RMSE of 3.51, non-significant difference, Mann-Whit-

ney U test, p> 0.05). At similar visual field estimate accuracy, SORS methods require fewer sti-

muli presentations than DTS and ZEST. More specifically, when compared to ZEST (median

number of presentations of 211), SORS-Z (median number of presentations of 140) achieves

the same accuracy (non-significant difference, Mann-Whitney U test, p> 0.05) with approxi-

mately 34% fewer number of stimuli presentations. Similarly, SORS-D (median number of sti-

muli presentations 108) achieves the same RMSE performance (non-significant difference,

Mann-Whitney U test, p> 0.05) with DTS (median number of stimuli presentations 145) by

reducing 25% of the required stimuli presentations (significant difference, Mann-Whitney U

Fig 4. Optimal test locations found by SORS. Optimal test locations when trained on healthy (left), glaucomatous (middle) and mixed population (right)

are presented. Numbers show the order in which the locations are evaluated.

https://doi.org/10.1371/journal.pone.0185049.g004
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test, p< 0.0001). These results support the fact that SORS can speed up examinations more

than other state-of-the-art approaches. In addition, our methods have less variance in the pro-

duced visual fields as evaluated in test-retest experiments (see Fig 6 and Appendix B) and per-

form well when testing on only healthy or glaucomatous populations (see Fig 7 and

Appendix C).

To fairly compare SORS to SEP, we run experiments on the same training and test sets that

were used in [14] and show the results in Fig 5 (right). First, one should note that as the test

data set in this experimental set-up has 245 healthy and 172 glaucomatous visual fields,

SORS-Z (median RMSE of 2.79 and median number of stimuli presentations of 64) and

SORS-D (median RMSE of 2.85 and median number of stimuli presentations of 54) have

lower RMSE and number of stimuli presentations than that shown in Fig 5 (left) where test set

includes 32 healthy and 465 glaucomatous visual fields. Accordingly, when testing 16 locations,

SORS-Z and SORS-D yield on average more accurate and faster examinations than SEP

(median RMSE of 3.27 and median number of stimuli presentations of 73, significant differ-

ence, Mann-Whitney U test, p< 0.0001). In addition, the comparison between SEP and

SORS-Z is interesting as they can both be seen as meta-strategies employing the same Bayesian

scheme at individual visual field locations. The fact that SORS-Z outperforms SEP supports

that SORS can encode and leverage relationships between visual field locations better, without

the need of modeling the location relationships explicitly.

4.4 Error and estimation bias

To quantify the distribution of errors in the estimation process of the tested perimetry strate-

gies, Fig 8 depicts the histogram of the average signed estimation error per location for ZEST,

DTS, SORS-D and SORS-Z. For SORS-Z and SORS-D, we also separately provide error histo-

grams for locations that have been observed and those that have been inferred.

Fig 5. Performance benchmarking with the state-of-the-art perimetry strategies. SORS is compared to (left) existing and commercially used

methods, (right) to SEP on mixed population. SORS is evaluated on 16 and 36 locations as specified in parenthesis. SORS-D and SORS-Z stand for

SORS-Dynamic and SORS-ZEST, respectively.

https://doi.org/10.1371/journal.pone.0185049.g005
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Fig 7. Performance comparison of perimetry strategies on different sub-populations. We present SORS performance on healthy (left) and

glaucomatous (right) visual fields compared to state-of-the-art methods.

https://doi.org/10.1371/journal.pone.0185049.g007

Fig 6. Test-retest variability of perimetry strategies. Standard deviations (SDs) of PST estimations of 5 tests per location are presented and the median

of each distribution is shown in the top right corner. SORS approaches tested 36 locations.

https://doi.org/10.1371/journal.pone.0185049.g006
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Accordingly, SORS-D leads to the smallest bias when the absolute mean of the distributions

is considered. Furthermore, it is biased towards lower values as the mean of the distribution is

positive, whereas all other methods except TOP are biased towards higher values. Typically,

the tendency to underestimate rather than overestimate PS values is preferable as it is associ-

ated with less patient risk. Interestingly, SORS-D uses the same location PS estimation scheme

than DTS, yet there is a noticeable reduction in the RMSE. The contribution of SORS is more

obvious when DTS is compared to SORS-D at observed locations. This indicates that the way

in which SORS selects test locations and estimates the next query stimulus (i.e., the starting

estimate of the staircase) is more favorable than that of DTS. As for SORS-Z, it is biased

towards higher estimations than the true PS values, showing resemblance to ZEST’s behavior,

with a slight reduction in mean and SD.

When we compare the error histograms of untested and tested locations for SORS-D, the

bias is reduced with an increase in the standard deviation (SD). This is expected as the variance

in the estimation of untested locations is likely to be higher. As expected, SORS-Z has stronger

bias towards over-estimation for untested locations than tested locations. The tendency of

SORS-Z/ZEST to over-estimate in general is most likely due to sub-optimal configuration of

Bayesian PS estimation as discussed in [14]. However, even with sub-optimal parameters,

SORS-Z has a comparable and even better performance on average compared to state-of-the-

art methods. Moreover, both SORS-Z and SORS-D have preferable error performances com-

pared to TOP which leads to a higher error SD, much higher than SORS’s error SDs at

untested locations.

Fig 8. Normalized histogram of signed errors of all visual field locations. Mean, standard deviations (SD) and number of visual

field locations (N) per plot are given in the left top corner of each plot. Histograms of errors on tested and untested locations are

separately shown for SORS-Z and SORS-D.

https://doi.org/10.1371/journal.pone.0185049.g008
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In Fig 9, we illustrate the estimation bias of the SORS methods with respect to the true PS

values found in visual fields, by comparing the predicted PS with the corresponding true val-

ues. We again present results of SORS at tested and untested locations. ZEST and SORS-Z

have similar estimation bias trends for tested locations. At untested locations, SORS-Z over-/

under-estimates at low and high PS values, respectively. SORS-D however suffers from less

bias than DTS at tested locations, whereas it also over-estimates in the low-value range of PS

when inferring untested locations. In general, the reconstruction procedure that SORS per-

forms for the estimation of non-tested locations results in a smoothed reconstruction, thus

avoiding values at both extremes of the dB spectrum.

4.5 Performance at scotoma borders

An important concern with perimetry strategies is their ability to capture scotoma (e.g.,

regions of isolated impairment). As in [12], we quantify these regions by computing Δl =

maxln 2 Nl|tl − tln| where tl is the true PS value at a location l and tln is the true PS of location

ln 2 N l, N l being the set of 8-neighbors of location l. Fig 10 depicts the absolute errors, i.e.,

ĵt l � tlj where t̂ l is the estimated PS value, with respect to Δl. Error box plots for tested and

untested locations are given separately for SORS-D and SORS-Z. For the error performances

on tested locations, SORS-D and SORS-Z show very similar performances with that of ZEST

and DTS, while having slightly fewer outliers. For error performances on untested locations,

SORS-D and SORS-Z have low median errors in the low and high value range of Δl, while they

have increased errors in mid-range scotoma values (10� Δl� 25). Even though, SORS leads

to higher median and standard deviations of the errors on untested locations, the majority of

Fig 9. Estimated PS versus true PS for SORS, ZEST and DTS. Estimation bias of SORS techniques in tested and untested locations are shown

separately. SORS-D and SORS-Z tested 36 locations.

https://doi.org/10.1371/journal.pone.0185049.g009
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errors occur within a reasonable range (i.e., less than 8 dB). Moreover, even for untested loca-

tions, both SORS methods lead to less outliers than DTS and ZEST.

4.6 Performance dependency on mean deviation

Mean deviation (MD) of a visual field is the average PS deviation from normal reference values

collected over a healthy population and is used clinically as an indication of visual impairment.

For example, MDs smaller than −2 may signify abnormal eye condition [3].

Accordingly, Fig 11 shows the relation between MD and RMSE/speed for all tested strate-

gies. In general, the MD-RMSE relation of each method is similar to one another: small RMSE

when MD> −10 and no obvious relation for the rest of the MD range. In terms of number of

stimuli presentations, ZEST and DTS have no dependency on MD. Our approaches, especially

SORS-D however, appears to depend on MD and surprisingly requires more stimuli for MD

> −10. This is due to the fact that within relatively healthy ranges (MD > −10), where SORS-D

uses small step sizes in its adaptive staircasing PS estimation method which leads to high preci-

sion but slower examinations.

Fig 12 shows the RMSE and the total number of stimuli presentations with respect to the

number of tested locations in SORS-D and SORS-Z for cases of healthy and early glaucoma-

tous visual fields. As can be seen, there is little difference in the average RMSE with respect to

number of tested locations. This implies that one can stop SORS earlier for healthier visual

fields without compromising accuracy. We also report that the outliers observed over the dif-

ferent number of stimuli presentations are caused by the same visual fields that appear to be

harder to estimate.

Fig 10. Error performance with respect toΔl per location. Absolute errors are presented for ZEST, DTS and SORS-Z and SORS-D. SORS

results are separately shown for tested and untested locations. SORS approaches tested 36 locations.

https://doi.org/10.1371/journal.pone.0185049.g010

Sequentially optimized reconstruction strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0185049 October 13, 2017 15 / 20

https://doi.org/10.1371/journal.pone.0185049.g010
https://doi.org/10.1371/journal.pone.0185049


5 Discussion and conclusions

We presented a novel SAP meta-strategy to quickly acquire visual fields as they are currently

measured accurately. Our approach leverages the correlations between visual field locations in

order to reconstruct the entire visual field from few observed locations. Such a procedure

allows our method to be applied at test time in an adaptive way and enables fast convergence

to an estimated visual field without having to test all locations. We showed experimentally that

SORS speeds up perimetry examination without heavily compromising visual field accuracy

Fig 11. Performance dependency of perimetry strategies on MD in terms of error and speed. We present the dependency of RMSE and number of

presentations on MD on the left and right figures respectively. SORS-D and SORS-Z tested 36 locations.

https://doi.org/10.1371/journal.pone.0185049.g011

Fig 12. Performance dependency of SORS on the number of tested locations for healthy and early glaucomatous visual fields (MD >−6). We

present the dependency of RMSE and number of presentations on MD on the left and right figures, respectively. RMSE slightly changes with the increasing

number of tested locations. With approximately 20 locations tested, SORS can double the speed without compromising accuracy.

https://doi.org/10.1371/journal.pone.0185049.g012
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and in some cases outperforms state-of-the-art methods outright. This was shown both on

healthy and glaucomatous subjects.

While providing better accuracy-speed trade-off, SORS however has some important limi-

tations. SORS is a purely data-driven approach with no parameters to tune except S, the num-

ber of visual field locations to be tested. As shown in Sec. 4.6, healthier visual fields need fewer

number of locations to be tested than glaucomatous visual fields. SORS therefore could be

stopped earlier in cases where no further testing is needed. In its current form, SORS does not

have an early stopping criterion, therefore it can not adapt to a given visual field at test time.

Another limitation of SORS is its deterministic collections of optimal test locations. As shown

in Fig 4, the optimized sequence of test locations can differ for healthy or glaucomatous sub-

jects, which could confine its performance. An online procedure for selecting locations during

the examination time, e.g., selecting location with high uncertainty as presented in [14] would

circumvent such a limitation. In effect, SORS is population-specific in its approach but not

patient-specific. These two main limitations are left as open problems that we will explore in

the future.

In the future, we plan to investigate how SORS can be made to be tested in batches such

that multiple locations are evaluated in parallel as in real examinations. This will allow SORS

to be tested on real human subjects, beyond the simulations presented here, which will provide

clinical evidence of SORS advantages and limitations. We will also investigate how the impor-

tance of different locations can be incorporated into our optimization scheme in order to be

more adapted to specific patients or pathologies.

Appendices

A Optimization scheme

To illustrate the advantage of our greedy optimization strategy presented in Sec 3, we also

compare it to two alternatives in Fig 2. The first is Reconstruction Strategy (RS), where we ran-

domly select S in order to build a reconstruction dictionary. The second is Optimized Recon-

struction Strategy (ORS), where we select in one step a sequence of S locations that minimizes

the RMSE among a randomly sampled 50 combinations of S locations. Importantly, ORS dif-

fers from SORS in that it does not iteratively optimize the location to pick based on the previ-

ously selected locations. As seen in Fig 2 (left), SORS-Z outperforms RS-Z and ORS-Z in terms

of accuracy-speed trade-off. Similarly, SORS-D outperforms RS-D and ORS-D. One can easily

see performance difference between two versions of reconstruction schemes: an algorithm

using adaptive staircasing always outperforms its Bayesian PS counterpart. As discussed ear-

lier, this is mainly due to the fact that parameters of Bayesian PS estimation scheme need to be

optimized to a specific data set so to perform better than adaptive staircasing.

In the presented RS and ORS in Fig 2 (left), testing scheme is different than SORS: there is

no intermediate reconstruction between testing two consecutive locations as in SORS, but

reconstruction takes place once after all S locations are tested. In this regard, SORS may seem

to be advantageous in testing time due to its intermediate reconstruction steps. To remove this

testing scheme bias, we incorporated intermediate reconstruction steps into RS and ORS,

which we call RSv2 and ORSv2 and compared them to SORS, as presented in Fig 2 (right).

Results show that RSv2 and ORSv2 still perform worse than their corresponding SORS ver-

sions. This clearly shows that the selection of test locations with associated basis matrices

which SORS computes is better optimized than what RS and ORS yield.
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B Test-retest variability

In order to see how much variability our approach induces if the same subject were to be tested

multiple times, we tested 5 times the same visual field with SORS-D and SORS-Z. We present

distributions of the standard deviations of the PS estimations for both of our approaches as

well as for ZEST and DTS in Fig 6. As can be seen from the median SDs, SORS approaches

have less test-retest variability than either ZEST or DTS. This result demonstrates the repro-

ducibility of SORS-acquired visual fields, even with certain locations left untested.

C Performance on sub-populations

Given that not all visual fields are of equal health, Fig 7 (left) and Fig 7 (right) depict the perfor-

mance results of each method with respect to different populations, namely healthy and glau-

comatous patients, respectively. Since glaucomatous samples were abundant in the mixed

population set, similar performance was obtained for glaucomatous case as in the mixed popu-

lation set as was shown in Fig 5 (left). On healthy population however, SORS testing only 16

locations yields to similar accuracy with that of DTS and ZEST with much less number of sti-

muli presentations.
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